login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370604
a(n) = n! * Sum_{d|n} 1/((d-1)! * (n/d)^d).
0
1, 3, 5, 16, 29, 251, 727, 7988, 47049, 512767, 3628811, 58012582, 479001613, 8007115559, 92633212687, 1648230784216, 20922789888017, 449622885136443, 6402373705728019, 146721895942876274, 2507411046373376021, 60380204535989936347, 1124000727777607680023
OFFSET
1,2
FORMULA
If p is prime, a(p) = p + (p-1)!.
E.g.f.: Sum_{k>0} x^k/k * exp(x^k/k).
PROG
(PARI) a(n) = n!*sumdiv(n, d, 1/((d-1)!*(n/d)^d));
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, x^k/k*exp(x^k/k))))
CROSSREFS
Cf. A370580.
Sequence in context: A080056 A330055 A019096 * A295358 A369930 A077551
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 23 2024
STATUS
approved