OFFSET
1,2
COMMENTS
The n-th greedy power of x, when 0.5 < x < 1, is the smallest integer exponent a(n) that does not cause the power series sum_{k=1..n} x^a(k) to exceed unity. A heuristic argument suggests that the limit of a(n)/n is m - sum_{n=m..inf} log(1 + x^n)/log(x) = 4.2164448079..., where x=(2/Pi) and m=floor(log(1-x)/log(x))=2.
FORMULA
a(n)=sum_{k=1..n}floor(g_k) where g_1=1, g_{n+1}=log_x(x^frac(g_n) - x) (n>0) at x=(2/Pi) and frac(y) = y - floor(y). See A077468 for mathematica program by Robert G. Wilson v.
EXAMPLE
a(3)=5 since (2/Pi) +(2/Pi)^3 +(2/Pi)^5 < 1 and (2/Pi) +(2/Pi)^3 +(2/Pi)^k > 1 for 3<k<5.
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre and Paul D. Hanna, Jan 23 2003
STATUS
approved