|
|
A039782
|
|
phi(n) is equal to the sum of the prime-power components of n-1.
|
|
0
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Close to Fermat primes (A019434). Next term if it exists is greater than 10^8. - Jud McCranie, Dec 09 1999
|
|
LINKS
|
|
|
EXAMPLE
|
phi(36)=12, 35=5^1*7^1, (5^1)+(7^1)=12.
|
|
MATHEMATICA
|
Select[Range[3, 66000], EulerPhi[#]==Total[#[[1]]^#[[2]]&/@FactorInteger[ #-1]]&] (* Harvey P. Dale, Nov 30 2018 *)
|
|
PROG
|
(PARI) isok(n) = (f = factor(n-1)) && (sum(i=1, #f~, f[i, 1]^f[i, 2]) == eulerphi(n)); \\ Michel Marcus, Jun 03 2014
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|