login
A039782
phi(n) is equal to the sum of the prime-power components of n-1.
0
3, 5, 16, 17, 22, 36, 40, 257, 65537
OFFSET
1,1
COMMENTS
Close to Fermat primes (A019434). Next term if it exists is greater than 10^8. - Jud McCranie, Dec 09 1999
Next term > 10^9. - Michel Marcus, Jun 03 2014
a(10) > 10^13, if it exists. - Giovanni Resta, Dec 03 2018
EXAMPLE
phi(36)=12, 35=5^1*7^1, (5^1)+(7^1)=12.
MATHEMATICA
Select[Range[3, 66000], EulerPhi[#]==Total[#[[1]]^#[[2]]&/@FactorInteger[ #-1]]&] (* Harvey P. Dale, Nov 30 2018 *)
PROG
(PARI) isok(n) = (f = factor(n-1)) && (sum(i=1, #f~, f[i, 1]^f[i, 2]) == eulerphi(n)); \\ Michel Marcus, Jun 03 2014
CROSSREFS
Sequence in context: A325257 A006593 A115724 * A331638 A080056 A330055
KEYWORD
nonn,more
AUTHOR
Olivier Gérard, Dec 11 1999
STATUS
approved