login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A008475
If n = Product (p_j^k_j) then a(n) = Sum (p_j^k_j) (a(1) = 0 by convention).
58
0, 2, 3, 4, 5, 5, 7, 8, 9, 7, 11, 7, 13, 9, 8, 16, 17, 11, 19, 9, 10, 13, 23, 11, 25, 15, 27, 11, 29, 10, 31, 32, 14, 19, 12, 13, 37, 21, 16, 13, 41, 12, 43, 15, 14, 25, 47, 19, 49, 27, 20, 17, 53, 29, 16, 15, 22, 31, 59, 12, 61, 33, 16, 64, 18, 16, 67, 21, 26, 14, 71, 17, 73
OFFSET
1,2
COMMENTS
For n>1, a(n) is the minimal number m such that the symmetric group S_m has an element of order n. - Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 26 2001
If gcd(u,w) = 1, then a(u*w) = a(u) + a(w); behaves like logarithm; compare A001414 or A056239. - Labos Elemer, Mar 31 2003
REFERENCES
F. J. Budden, The Fascination of Groups, Cambridge, 1972; pp. 322, 573.
József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter IV, p. 147.
T. Z. Xuan, On some sums of large additive number theoretic functions (in Chinese), Journal of Beijing normal university, No. 2 (1984), pp. 11-18.
LINKS
Daniel Forgues, Table of n, a(n) for n = 1..100000 (first 10000 terms from T. D. Noe)
John Bamberg, Grant Cairns and Devin Kilminster, The crystallographic restriction, permutations and Goldbach's conjecture, Amer. Math. Monthly, Vol. 110, No. 3 (March 2003), pp. 202-209.
Roger B. Eggleton and William P. Galvin, Upper Bounds on the Sum of Principal Divisors of an Integer, Mathematics Magazine, Vol. 77, No. 3 (Jun., 2004), pp. 190-200.
FORMULA
Additive with a(p^e) = p^e.
a(A000961(n)) = A000961(n); a(A005117(n)) = A001414(A005117(n)).
a(n) = Sum_{k=1..A001221(n)} A027748(n,k) ^ A124010(n,k) for n>1. - Reinhard Zumkeller, Oct 10 2011
a(n) = Sum_{k=1..A001221(n)} A141809(n,k) for n > 1. - Reinhard Zumkeller, Jan 29 2013
Sum_{k=1..n} a(k) ~ (Pi^2/12)* n^2/log(n) + O(n^2/log(n)^2) (Xuan, 1984). - Amiram Eldar, Mar 04 2021
EXAMPLE
a(180) = a(2^2 * 3^2 * 5) = 2^2 + 3^2 + 5 = 18.
MAPLE
A008475 := proc(n) local e, j; e := ifactors(n)[2]:
add(e[j][1]^e[j][2], j=1..nops(e)) end:
seq(A008475(n), n=1..60); # Peter Luschny, Jan 17 2010
MATHEMATICA
f[n_] := Plus @@ Power @@@ FactorInteger@ n; f[1] = 0; Array[f, 73]
PROG
(PARI) for(n=1, 100, print1(sum(i=1, omega(n), component(component(factor(n), 1), i)^component(component(factor(n), 2), i)), ", "))
(PARI) a(n)=local(t); if(n<1, 0, t=factor(n); sum(k=1, matsize(t)[1], t[k, 1]^t[k, 2])) /* Michael Somos, Oct 20 2004 */
(PARI) A008475(n) = { my(f=factor(n)); vecsum(vector(#f~, i, f[i, 1]^f[i, 2])); }; \\ Antti Karttunen, Nov 17 2017
(Haskell)
a008475 1 = 0
a008475 n = sum $ a141809_row n
-- Reinhard Zumkeller, Jan 29 2013, Oct 10 2011
(Python)
from sympy import factorint
def a(n):
f=factorint(n)
return 0 if n==1 else sum([i**f[i] for i in f]) # Indranil Ghosh, May 20 2017
KEYWORD
nonn,nice
STATUS
approved