login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159077
a(n) = A008475(n) + 1.
3
1, 3, 4, 5, 6, 6, 8, 9, 10, 8, 12, 8, 14, 10, 9, 17, 18, 12, 20, 10, 11, 14, 24, 12, 26, 16, 28, 12, 30, 11, 32, 33, 15, 20, 13, 14, 38, 22, 17, 14, 42, 13, 44, 16, 15, 26, 48, 20, 50, 28, 21, 18, 54, 30, 17, 16, 23, 32, 60, 13, 62, 34, 17, 65, 19, 17, 68, 22, 27, 15, 72, 18, 74
OFFSET
1,2
COMMENTS
If n = Product (p_i^k_i) for i = 1, …, j then a(n) is sum of divisor d from set of divisors{1, p_1^k_1, p_2^k_2, …, p_j^k_j}.
FORMULA
a(n) = [Sum_(i=1,…, j) p_i^k_i] + 1 = A000203(n) - A178636(n).
a(1) = 1, a(p) = p+1, a(pq) = p+q+1, a(pq...z) = p+q+...+z+1, a(p^k) = p^k+1, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
EXAMPLE
For n = 12, set of divisors {1, p_1^k_1, p_2^k_2, …, p_j^k_j}: {1, 3, 4}. a(12) = 1+3+4=8.
MATHEMATICA
f[n_] := 1 + Plus @@ Power @@@ FactorInteger@ n; f[1] = 1; Array[f, 60]
PROG
(PARI) a(n)=local(t); if(n<1, 0, t=factor(n); 1+sum(k=1, matsize(t)[1], t[k, 1]^t[k, 2])) /* Anton Mosunov, Jan 05 2017 */
CROSSREFS
Sequence in context: A036288 A320727 A374691 * A049267 A111608 A126800
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Apr 04 2009
EXTENSIONS
Edited by N. J. A. Sloane, Apr 07 2009
STATUS
approved