login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028233
If n = p_1^e_1 * ... * p_k^e_k, p_1 < ... < p_k primes, then a(n) = p_1^e_1, with a(1) = 1.
27
1, 2, 3, 4, 5, 2, 7, 8, 9, 2, 11, 4, 13, 2, 3, 16, 17, 2, 19, 4, 3, 2, 23, 8, 25, 2, 27, 4, 29, 2, 31, 32, 3, 2, 5, 4, 37, 2, 3, 8, 41, 2, 43, 4, 9, 2, 47, 16, 49, 2, 3, 4, 53, 2, 5, 8, 3, 2, 59, 4, 61, 2, 9, 64, 5, 2, 67, 4, 3, 2, 71, 8, 73, 2, 3, 4, 7, 2, 79, 16, 81, 2, 83, 4, 5, 2
OFFSET
1,2
COMMENTS
Highest power of smallest prime dividing n. - Reinhard Zumkeller, Apr 09 2015
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
FORMULA
a(n) = A020639(n)^A067029(n). - Reinhard Zumkeller, May 13 2006
a(n) = A141809(n,1). - Reinhard Zumkeller, Jun 04 2012
a(n) = n / A028234(n). - Antti Karttunen, May 29 2017
EXAMPLE
From Muniru A Asiru, Jan 27 2018: (Start)
If n=10, then a(10) = 2 since 10 = 2^1*5^1.
If n=16, then a(16) = 16 since 16 = 2^4.
If n=29, then a(29) = 29 since 29 = 29^1.
(End)
MAPLE
A028233 := proc(n)
local spf, pf;
if n = 1 then
return 1 ;
end if;
spf := A020639(n) ;
for pf in ifactors(n)[2] do
if pf[1] = spf then
return pf[1]^pf[2] ;
end if;
end do:
end proc: # R. J. Mathar, Jul 09 2016
# second Maple program:
a:= n-> `if`(n=1, 1, (i->i[1]^i[2])(sort(ifactors(n)[2])[1])):
seq(a(n), n=1..100); # Alois P. Heinz, Jan 29 2018
MATHEMATICA
a[n_] := Power @@ First[ FactorInteger[n]]; Table[a[n], {n, 1, 86}] (* Jean-François Alcover, Dec 01 2011 *)
PROG
(Haskell)
a028233 = head . a141809_row
-- Reinhard Zumkeller, Jun 04 2012, Aug 17 2011
(PARI) a(n)=if(n>1, n=factor(n); n[1, 1]^n[1, 2], 1) \\ Charles R Greathouse IV, Apr 26 2012
(Python)
from sympy import factorint
def a(n):
f = factorint(n)
return 1 if n==1 else min(f)**f[min(f)] # Indranil Ghosh, May 12 2017
(Scheme)
;; Naive implementation of A020639 is given under that entry. All of these functions could be also defined with definec to make them faster on the later calls. See http://oeis.org/wiki/Memoization#Scheme
(define (A028233 n) (if (< n 2) n (let ((lpf (A020639 n))) (let loop ((m lpf) (n (/ n lpf))) (cond ((not (zero? (modulo n lpf))) m) (else (loop (* m lpf) (/ n lpf)))))))) ;; Antti Karttunen, May 29 2017
(GAP) List(List(List(List([1..10^3], Factors), Collected), i -> i[1]), j -> j[1]^j[2]); # Muniru A Asiru, Jan 27 2018
CROSSREFS
See also A028234.
Cf. A008475.
Cf. A141809.
Sequence in context: A304181 A034684 A323130 * A375400 A379119 A216972
KEYWORD
nonn,nice,easy
AUTHOR
EXTENSIONS
Name edited to include a(1) = 1 by Franklin T. Adams-Watters, Jan 27 2018
STATUS
approved