login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028231
From hexagons in a circle problem.
4
1, 22, 313, 4366, 60817, 847078, 11798281, 164328862, 2288805793, 31878952246, 444016525657, 6184352406958, 86136917171761, 1199732487997702, 16710117914796073, 232741918319147326, 3241676738553266497, 45150732421426583638, 628868577161418904441
OFFSET
0,2
COMMENTS
Numbers k such that (k^2 + k + 1)/3 is a square. - Arkadiusz Wesolowski, Feb 10 2012
Given by the numerators of the convergents to the continued fraction [1,(1,2)^i,3,(1,2)^{i-1},1]. - Jeffrey Shallit, Dec 11 2017
REFERENCES
J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 104.
T. Nagell, Des équations indéterminées x^2 + x + 1 = y^n et x^2 + x + 1 = 3*y^n, Norsk Mat. Forenings Skrifter, Ser. I, (1921).
LINKS
FORMULA
a(n) = sqrt(3)*((2+sqrt(3))^(2*n+1) - (2-sqrt(3))^(2*n+1))/4 - 1/2 (see Kevin A. Broughan paper). - Michel Marcus, Jul 28 2012
a(n) = 15*a(n-1)-15*a(n-2)+a(n-3). G.f.: (1+7*x-2*x^2)/((1-x)*(1-14*x+x^2)). - conjectured by Colin Barker, Apr 10 2012; these follow easily from the formula.
MAPLE
f:= gfun:-rectoproc({a(n) = 15*a(n-1)-15*a(n-2)+a(n-3), a(0)=1, a(1)=22, a(2)=313}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Dec 12 2017
MATHEMATICA
With[{k = Sqrt@ 3}, Simplify@ Array[k ((2 + k)^(2 # + 1) - (2 - k)^(2 # + 1))/4 - 1/2 &, 19, 0]] (* Michael De Vlieger, Dec 11 2017 *)
PROG
(PARI) a(n) = {w = quadgen(12); w*((2+w)^(2*n+1) - (2-w)^(2*n+1))/4 - 1/2; } /* Michel Marcus, Jul 28 2012 */
CROSSREFS
Cf. A001570, which gives the corresponding values of y in 3y^2 = n^2 + n + 1. - Jeffrey Shallit, Dec 11 2017
Sequence in context: A348266 A025992 A028034 * A326277 A025988 A267132
KEYWORD
nonn,easy
EXTENSIONS
Edited by Robert Israel, Dec 12 2017
STATUS
approved