|
|
A028229
|
|
Call m Egyptian if we can partition m = x_1+x_2+...+x_k into positive integers x_i such that Sum_{i=1..k} 1/x_i = 1; sequence gives all non-Egyptian numbers.
|
|
5
|
|
|
2, 3, 5, 6, 7, 8, 12, 13, 14, 15, 19, 21, 23
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Graham showed that every number >=78 is strict-sense Egyptian.
|
|
REFERENCES
|
J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 147.
See also R. K. Guy, Unsolved Problems Number Theory, Sect. D11.
|
|
LINKS
|
Table of n, a(n) for n=1..13.
R. L. Graham, A theorem on partitions, J. Austral. Math. Soc. 3:4 (1963), pp. 435-441. doi:10.1017/S1446788700039045
Eric Weisstein's World of Mathematics, Egyptian Number.
Index entries for sequences related to Egyptian fractions
|
|
EXAMPLE
|
1=1/3+1/3+1/3, so 3+3+3=9 is Egyptian.
|
|
MATHEMATICA
|
egyptianQ[n_] := Select[ IntegerPartitions[n], Total[1/#] == 1 &, 1] =!= {}; A028229 = Reap[ Do[ If[ !egyptianQ[n], Sow[n]], {n, 1, 40}]][[2, 1]] (* Jean-François Alcover, Feb 23 2012 *)
|
|
CROSSREFS
|
Cf. A051882. Complement gives A125726.
Sequence in context: A006431 A285528 A151894 * A104452 A335073 A062877
Adjacent sequences: A028226 A028227 A028228 * A028230 A028231 A028232
|
|
KEYWORD
|
nonn,fini,full,nice
|
|
AUTHOR
|
N. J. A. Sloane, Jud McCranie
|
|
STATUS
|
approved
|
|
|
|