login
A285528
Numbers n such that A217723(n) (sum of first n primorial numbers minus 1) is prime.
0
2, 3, 5, 6, 7, 8, 11, 14, 21, 41, 42, 43, 74, 78
OFFSET
1,1
COMMENTS
This sequence is finite since 463 (the 90th prime) divides A217723(89) and thus all the succeeding terms of A217723 are also divisible by 463.
The associated primes are: 7, 37, 2557, 32587, 543097, 10242787, 207263519017, 13394639596851067, 41295598995285955839203627497, 2.998... * 10^70, 5.427... * 10^72, 1.036... * 10^75, 4.549... * 10^150 and 1.019... * 10^161. They are a subsequence of A127729.
EXAMPLE
A217723(5) = 2 + 2*3 + 2*3*5 + 2*3*5*7 + 2*3*5*7*11 - 1 = 2557 is prime, thus 5 is in this sequence.
MAPLE
select(m -> isprime(add(mul(ithprime(i), i=1..j), j=1..m)-1), [$1..89]); # Robert Israel, Apr 20 2017
MATHEMATICA
primorial[n_] := Product[Prime[i], {i, n}]; a[n_] := Sum[primorial[i], {i, 1, n}]-1; Select[Range[0, 100], PrimeQ[a[#]] &]
(* Second program: *)
Flatten@ Position[Accumulate@ FoldList[#1 #2 &, Prime@ Range@ 200] - 1 /. k_ /; k == 1 || CompositeQ@ k -> 0, m_ /; m != 0] (* Michael De Vlieger, Apr 23 2017 *)
CROSSREFS
KEYWORD
nonn,fini,full
AUTHOR
Amiram Eldar, Apr 20 2017
STATUS
approved