login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285525
The indices that mark the beginning of four consecutive equal terms in A285524.
2
13, 38, 63, 85, 110, 135, 160, 185, 210, 232, 257, 282, 307, 332, 354, 379, 404, 429, 454, 479, 501, 526, 551, 576, 601, 626, 648, 673, 698, 723, 748, 770, 795, 820, 845, 870, 895, 917, 942, 967, 992, 1017, 1042, 1064, 1089, 1114, 1139, 1164, 1186, 1211, 1236, 1261
OFFSET
1,1
LINKS
Robert Davis, Sarah A. Nelson, T. Kyle Petersen, Bridget E. Tenner, The pinnacle set of a permutation, arXiv:1704.05494 [math.CO], 2017.
MATHEMATICA
b[n_] := b[n] = MaximalBy[Table[{d, d! (d+1)! 2^(n - 2d - 1) StirlingS2[n - d, d + 1]}, {d, 1, n/2}], Last][[All, 1]] // Min;
A285524 = Table[b[n], {n, 4, 1000}];
Position[If[Length[#] == 4, Join[{0}, Rest[#]], #]& /@ Split[A285524] // Flatten, 0] + 3 // Flatten (* Jean-François Alcover, Feb 23 2019 *)
PROG
(PARI) half(n) = if (n % 2, n\2, n/2 - 1);
a285524(n) = {v = vector(half(n), d, d!*(d + 1)!*(2^(n-2*d-1)*stirling(n-d, d+1, 2))); w = vecsort(v, , 1); w[#w]; }
lista(nn) = {v = vector(nn, n, a285524(n+3)); for (k=1, #v-4, if ((v[k] == v[k+1]) && (v[k] == v[k+2]) && (v[k] == v[k+3]), print1(k+3, ", ")); ); }
CROSSREFS
Sequence in context: A244185 A044090 A044471 * A209991 A299055 A158647
KEYWORD
nonn
AUTHOR
Michel Marcus, Apr 20 2017
EXTENSIONS
More terms from Jinyuan Wang, Feb 10 2020
STATUS
approved