This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A285529 Triangle read by rows: T(n,k) is the number of nodes of degree k counted over all simple labeled graphs on n nodes, n>=1, 0<=k<=n-1. 0
 1, 2, 2, 6, 12, 6, 32, 96, 96, 32, 320, 1280, 1920, 1280, 320, 6144, 30720, 61440, 61440, 30720, 6144, 229376, 1376256, 3440640, 4587520, 3440640, 1376256, 229376, 16777216, 117440512, 352321536, 587202560, 587202560, 352321536, 117440512, 16777216 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS FORMULA E.g.f. for column k: x * Sum_{n>=0} binomial(n,k)*2^binomial(n,2)*x^n/n!. Sum_{k=1..n-1} T(n,k)*k/2 = A095351(n). T(n,k) = n*binomial(n-1,k)*2^binomial(n-1,2). - Alois P. Heinz, Apr 21 2017 EXAMPLE 1, 2,   2, 6,   12,   6, 32,  96,   96,   32, 320, 1280, 1920, 1280, 320, ... MATHEMATICA nn = 9; Map[Select[#, # > 0 &] &,   Drop[Transpose[Table[A[z_] := Sum[Binomial[n, k] 2^Binomial[n, 2] z^n/n!, {n, 0, nn}]; Range[0, nn]! CoefficientList[Series[z A[z], {z, 0, nn}], z], {k, 0, nn - 1}]], 1]] // Grid CROSSREFS Row sums give A095340. Columns for k=0-3: A123903, A095338, A038094, A038096. Sequence in context: A241669 A178802 A156992 * A305215 A219694 A054481 Adjacent sequences:  A285526 A285527 A285528 * A285530 A285531 A285532 KEYWORD nonn,tabl AUTHOR Geoffrey Critzer, Apr 20 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 20:33 EST 2019. Contains 329849 sequences. (Running on oeis4.)