login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356546
Triangle read by rows. T(n, k) = RisingFactorial(n + 1, n) / (k! * (n - k)!).
3
1, 2, 2, 6, 12, 6, 20, 60, 60, 20, 70, 280, 420, 280, 70, 252, 1260, 2520, 2520, 1260, 252, 924, 5544, 13860, 18480, 13860, 5544, 924, 3432, 24024, 72072, 120120, 120120, 72072, 24024, 3432, 12870, 102960, 360360, 720720, 900900, 720720, 360360, 102960, 12870
OFFSET
0,2
COMMENTS
The counterpart using the falling factorial is Leibniz's Harmonic Triangle A003506.
FORMULA
Bernoulli(n) / Catalan(n) = Sum_{k=0..n} (-1)^k*A173018(n, k) / T(n, k), (with Bernoulli(1) = 1/2).
G.f.: 1/sqrt(1 - 4*x*(y + 1)). - Vladimir Kruchinin, Feb 15 2023
EXAMPLE
Triangle T(n, k) begins:
[0] 1;
[1] 2, 2;
[2] 6, 12, 6;
[3] 20, 60, 60, 20;
[4] 70, 280, 420, 280, 70;
[5] 252, 1260, 2520, 2520, 1260, 252;
[6] 924, 5544, 13860, 18480, 13860, 5544, 924;
[7] 3432, 24024, 72072, 120120, 120120, 72072, 24024, 3432;
[8] 12870, 102960, 360360, 720720, 900900, 720720, 360360, 102960, 12870;
MAPLE
A356546 := (n, k) -> pochhammer(n+1, n)/(k!*(n-k)!):
for n from 0 to 8 do seq(A356546(n, k), k=0..n) od;
MATHEMATICA
T[ n_, k_] := Binomial[2*n, n] * Binomial[n, k]; (* Michael Somos, Aug 18 2022 *)
PROG
(SageMath)
def A356546(n, k):
return rising_factorial(n+1, n) // (factorial(k) * factorial(n-k))
for n in range(9): print([A356546(n, k) for k in range(n+1)])
(PARI) {T(n, k) = binomial(2*n, n) * binomial(n, k)}; /* Michael Somos, Aug 18 2022 */
CROSSREFS
cf. A000984, A059304 (row sums, see also A343842), A265609 (rising factorial).
Cf. A003506, A173018 (Eulerian numbers), A000108, A000897 (central terms).
Sequence in context: A281351 A351081 A241669 * A178802 A156992 A285529
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Aug 12 2022
STATUS
approved