The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A356546 Triangle read by rows. T(n, k) = RisingFactorial(n + 1, n) / (k! * (n - k)!). 3
 1, 2, 2, 6, 12, 6, 20, 60, 60, 20, 70, 280, 420, 280, 70, 252, 1260, 2520, 2520, 1260, 252, 924, 5544, 13860, 18480, 13860, 5544, 924, 3432, 24024, 72072, 120120, 120120, 72072, 24024, 3432, 12870, 102960, 360360, 720720, 900900, 720720, 360360, 102960, 12870 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The counterpart using the falling factorial is Leibniz's Harmonic Triangle A003506. LINKS Table of n, a(n) for n=0..44. FORMULA Bernoulli(n) / Catalan(n) = Sum_{k=0..n} (-1)^k*A173018(n, k) / T(n, k), (with Bernoulli(1) = 1/2). G.f.: 1/sqrt(1 - 4*x*(y + 1)). - Vladimir Kruchinin, Feb 15 2023 EXAMPLE Triangle T(n, k) begins: [0] 1; [1] 2, 2; [2] 6, 12, 6; [3] 20, 60, 60, 20; [4] 70, 280, 420, 280, 70; [5] 252, 1260, 2520, 2520, 1260, 252; [6] 924, 5544, 13860, 18480, 13860, 5544, 924; [7] 3432, 24024, 72072, 120120, 120120, 72072, 24024, 3432; [8] 12870, 102960, 360360, 720720, 900900, 720720, 360360, 102960, 12870; MAPLE A356546 := (n, k) -> pochhammer(n+1, n)/(k!*(n-k)!): for n from 0 to 8 do seq(A356546(n, k), k=0..n) od; MATHEMATICA T[ n_, k_] := Binomial[2*n, n] * Binomial[n, k]; (* Michael Somos, Aug 18 2022 *) PROG (SageMath) def A356546(n, k): return rising_factorial(n+1, n) // (factorial(k) * factorial(n-k)) for n in range(9): print([A356546(n, k) for k in range(n+1)]) (PARI) {T(n, k) = binomial(2*n, n) * binomial(n, k)}; /* Michael Somos, Aug 18 2022 */ CROSSREFS cf. A000984, A059304 (row sums, see also A343842), A265609 (rising factorial). Cf. A003506, A173018 (Eulerian numbers), A000108, A000897 (central terms). Sequence in context: A281351 A351081 A241669 * A178802 A156992 A285529 Adjacent sequences: A356543 A356544 A356545 * A356547 A356548 A356549 KEYWORD sign,tabl AUTHOR Peter Luschny, Aug 12 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 12 03:07 EDT 2024. Contains 375085 sequences. (Running on oeis4.)