OFFSET
0,2
COMMENTS
The counterpart using the falling factorial is Leibniz's Harmonic Triangle A003506.
FORMULA
Bernoulli(n) / Catalan(n) = Sum_{k=0..n} (-1)^k*A173018(n, k) / T(n, k), (with Bernoulli(1) = 1/2).
G.f.: 1/sqrt(1 - 4*x*(y + 1)). - Vladimir Kruchinin, Feb 15 2023
EXAMPLE
Triangle T(n, k) begins:
[0] 1;
[1] 2, 2;
[2] 6, 12, 6;
[3] 20, 60, 60, 20;
[4] 70, 280, 420, 280, 70;
[5] 252, 1260, 2520, 2520, 1260, 252;
[6] 924, 5544, 13860, 18480, 13860, 5544, 924;
[7] 3432, 24024, 72072, 120120, 120120, 72072, 24024, 3432;
[8] 12870, 102960, 360360, 720720, 900900, 720720, 360360, 102960, 12870;
MAPLE
MATHEMATICA
T[ n_, k_] := Binomial[2*n, n] * Binomial[n, k]; (* Michael Somos, Aug 18 2022 *)
PROG
(SageMath)
def A356546(n, k):
return rising_factorial(n+1, n) // (factorial(k) * factorial(n-k))
for n in range(9): print([A356546(n, k) for k in range(n+1)])
(PARI) {T(n, k) = binomial(2*n, n) * binomial(n, k)}; /* Michael Somos, Aug 18 2022 */
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Aug 12 2022
STATUS
approved