login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123903
Total number of "Emperors" in all tournaments on n labeled nodes.
10
0, 1, 2, 6, 32, 320, 6144, 229376, 16777216, 2415919104, 687194767360, 387028092977152, 432345564227567616, 959230691832896684032, 4231240368651202111471616, 37138201178561408246973726720, 649037107316853453566312041152512, 22596875928343569839364720024765857792
OFFSET
0,3
COMMENTS
An "Emperor" is a player who beats everybody else.
a(n) is the number of isolated nodes in all simple labeled graphs on n nodes. - Geoffrey Critzer, Oct 19 2011
LINKS
S. B. Maurer, The king chicken theorems, Math. Mag., 53 (1980), 67-80.
FORMULA
a(n) = n*2^((n-1)*(n-2)/2).
E.g.f.: x * Sum_{n>=0} 2^C(n,2) x^n/n!. - Geoffrey Critzer, Oct 19 2011
a(n) = n * A006125(n-1). - Anton Zakharov, Dec 21 2016
MAPLE
a:= n-> n*2^((n-1)*(n-2)/2):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 26 2013
MATHEMATICA
a=Sum[2^Binomial[n, 2]x^n/n!, {n, 0, 20}];
Range[0, 20]!CoefficientList[Series[x a, {x, 0, 20}], x]
Table[n*2^Binomial[n-1, 2], {n, 0, 20}] (* G. C. Greubel, Aug 06 2019 *)
PROG
(Maxima) A123903(n):=n*2^((n-1)*(n-2)/2)$ makelist(A123903(n), n, 0, 17); /* Martin Ettl, Nov 13 2012 */
(PARI) vector(20, n, n--; n*2^binomial(n-1, 2)) \\ G. C. Greubel, Aug 06 2019
(Magma) [n*2^Binomial(n-1, 2): n in [0..20]]; // G. C. Greubel, Aug 06 2019
(Sage) [n*2^binomial(n-1, 2) for n in (0..20)] # G. C. Greubel, Aug 06 2019
(GAP) List([0..20], n-> n*2^Binomial(n-1, 2)); # G. C. Greubel, Aug 06 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 20 2006
STATUS
approved