

A125726


Call n Egyptian if we can partition n = x_1+x_2+...+x_k into positive integers x_i such that Sum_{i=1..k} 1/x_i = 1; sequence gives Egyptian numbers.


2



1, 4, 9, 10, 11, 16, 17, 18, 20, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


REFERENCES

R. L. Graham, A theorem on partitions, J. Austral. Math. Soc., 4 (1963), 435441.
J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 147.
See also R. K. Guy, Unsolved Problems Number Theory, Sect. D11.


LINKS

Table of n, a(n) for n=1..73.
Phorum5, Nombres remarquables
Eric Weisstein's World of Mathematics, Egyptian Number.
Index entries for sequences related to Egyptian fractions


EXAMPLE

1=1/3+1/3+1/3, so 3+3+3=9 is Egyptian.


CROSSREFS

Complement of A028229.
Sequence in context: A174800 A062371 A046030 * A175308 A244533 A180149
Adjacent sequences: A125723 A125724 A125725 * A125727 A125728 A125729


KEYWORD

nonn


AUTHOR

Jan RUCKA (jan_rucka(AT)hotmail.com), Feb 06 2007


STATUS

approved



