login
A125726
Call n Egyptian if we can partition n = x_1+x_2+...+x_k into positive integers x_i such that Sum_{i=1..k} 1/x_i = 1; sequence gives Egyptian numbers.
1
1, 4, 9, 10, 11, 16, 17, 18, 20, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86
OFFSET
1,2
REFERENCES
J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 147.
See also R. K. Guy, Unsolved Problems Number Theory, Sect. D11.
LINKS
R. L. Graham, A theorem on partitions, J. Austral. Math. Soc., 4 (1963), 435-441.
Les Mathematiques.net, Nombres remarquables (French blog).
Eric Weisstein's World of Mathematics, Egyptian Number.
EXAMPLE
1=1/3+1/3+1/3, so 3+3+3=9 is Egyptian.
CROSSREFS
Complement of A028229.
Sequence in context: A174800 A062371 A046030 * A352323 A175308 A244533
KEYWORD
nonn
AUTHOR
Jan RUCKA (jan_rucka(AT)hotmail.com), Feb 06 2007
STATUS
approved