login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A104452 Number of groups of order <= n all of whose subgroups are normal. 3
1, 2, 3, 5, 6, 7, 8, 12, 14, 15, 16, 18, 19, 20, 21, 27, 28, 30, 31, 33, 34, 35, 36, 40, 42, 43, 46, 48, 49, 50, 51, 59, 60, 61, 62, 66, 67, 68, 69, 73, 74, 75, 76, 78, 80, 81, 82, 88, 90, 92, 93, 95, 96, 99, 100, 104, 105, 106, 107, 109, 110, 111, 113, 125, 126, 127 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

R. D. Carmichael, Introduction to the Theory of Groups of Finite Order, New York, Dover, 1956.

J. C. Lennox, S. E. Stonehewer, Subnormal Subgroups of Groups, Oxford University Press, 1987.

LINKS

Table of n, a(n) for n=1..66.

B. Horvat, G. Jaklic and T. Pisanski, On the number of Hamiltonian groups, arXiv:math/0503183 [math.CO], 2005.

T. Pisanski and T.W. Tucker, The genus of low rank hamiltonian groups, Discrete Math. 78 (1989), 157-167.

Eric Weisstein's World of Mathematics, Abelian Group

Eric Weisstein's World of Mathematics, Hamiltonian Group

MATHEMATICA

orders[n_]:=Map[Last, FactorInteger[n]]; a[n_]:=Apply[Times, Map[PartitionsP, orders[n]]]; e[n_]:=n/ 2^IntegerExponent[n, 2]; h[n_]/; Mod[n, 8]==0:=a[e[n]]; h[n_]:=0; numberOfAbelianGroupsOfOrderLEQThanN[n_]:=Map[Apply[Plus, # ]&, Table[Take[Map[a, Table[i, {i, 1, n}]], i], {i, 1, n}]]; numberOfHamiltonianGroupsOfOrderLEQThanN[n_]:=Map[Apply[Plus, # ]&, Table[Take[Map[h, Table[i, {i, 1, n}]], i], {i, 1, n}]]; numberOfAllGroupsOfOrderLEQThanN[n_]:=numberOfAbelianGroupsOfOrderLEQThanN[n] +numberOfHamiltonianGroupsOfOrderLEQThanN[n];

CROSSREFS

Cf. A000688, A063966, A104488, A104407, A104404, A104453.

Sequence in context: A285528 A151894 A028229 * A062877 A068526 A287339

Adjacent sequences:  A104449 A104450 A104451 * A104453 A104454 A104455

KEYWORD

nonn,easy

AUTHOR

Boris Horvat (Boris.Horvat(AT)fmf.uni-lj.si), Gasper Jaklic (Gasper.Jaklic(AT)fmf.uni-lj.si), Tomaz Pisanski, Apr 19 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 04:46 EST 2019. Contains 329853 sequences. (Running on oeis4.)