login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104488
Number of Hamiltonian groups of order n.
5
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
OFFSET
1,72
REFERENCES
Robert D. Carmichael, Introduction to the Theory of Groups of Finite Order, New York, Dover, 1956.
John C. Lennox and Stewart. E. Stonehewer, Subnormal Subgroups of Groups, Oxford University Press, 1987.
LINKS
Boris Horvat, Gašper Jaklič, and Tomaž Pisanski, On the number of hamiltonian groups, Mathematical Communications, Vol. 10, No. 1 (2005), pp. 89-94; arXiv preprint, arXiv:math/0503183 [math.CO], 2005.
Tomaž Pisanski and Thomas W. Tucker, The genus of low rank hamiltonian groups, Discrete Math. 78 (1989), 157-167.
Eric Weisstein's World of Mathematics, Hamiltonian Group.
FORMULA
Let n = 2^e*o, where e = e(n) >= 0 and o = o(n) is an odd number. The number h(n) of Hamiltonian groups of order n is given by h(n) = 0, if e(n) < 3 and h(n) = a(o(n)), otherwise, where a(n) = A000688(n) denotes the number of Abelian groups of order n.
a(8*n) = A000688(A000265(n)), a(n) = 0 for n mod 8 <> 0. - Andrew Howroyd, Aug 08 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A021002 * A048651 / 4 = 0.16568181590156732257... . - Amiram Eldar, Sep 23 2023
MATHEMATICA
orders[n_]:=Map[Last, FactorInteger[n]]; a[n_]:=Apply[Times, Map[PartitionsP, orders[n]]]; e[n_]:=n/ 2^IntegerExponent[n, 2]; h[n_]/; Mod[n, 8]==0:=a[e[n]]; h[n_]:=0;
(* Second program: *)
a[n_] := If[Mod[n, 8]==0, FiniteAbelianGroupCount[n/2^IntegerExponent[n, 2]], 0]; Array[a, 102] (* Jean-François Alcover, Sep 14 2019 *)
PROG
(PARI) a(n)={my(e=valuation(n, 2)); if(e<3, 0, my(f=factor(n/2^e)[, 2]); prod(i=1, #f, numbpart(f[i])))} \\ Andrew Howroyd, Aug 08 2018
KEYWORD
nonn,easy,nice
AUTHOR
Boris Horvat (Boris.Horvat(AT)fmf.uni-lj.si), Gasper Jaklic (Gasper.Jaklic(AT)fmf.uni-lj.si), Tomaz Pisanski, Apr 19 2005
STATUS
approved