login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of Hamiltonian groups of order n.
5

%I #36 Sep 23 2023 03:48:13

%S 0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,

%T 0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,

%U 0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0

%N Number of Hamiltonian groups of order n.

%D Robert D. Carmichael, Introduction to the Theory of Groups of Finite Order, New York, Dover, 1956.

%D John C. Lennox and Stewart. E. Stonehewer, Subnormal Subgroups of Groups, Oxford University Press, 1987.

%H T. D. Noe, <a href="/A104488/b104488.txt">Table of n, a(n) for n = 1..10000</a>

%H Boris Horvat, Gašper Jaklič, and Tomaž Pisanski, <a href="https://hrcak.srce.hr/clanak/1339">On the number of hamiltonian groups</a>, Mathematical Communications, Vol. 10, No. 1 (2005), pp. 89-94; <a href="https://arxiv.org/abs/math/0503183">arXiv preprint</a>, arXiv:math/0503183 [math.CO], 2005.

%H Tomaž Pisanski and Thomas W. Tucker, <a href="https://doi.org/10.1016/0012-365X(89)90173-8">The genus of low rank hamiltonian groups</a>, Discrete Math. 78 (1989), 157-167.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HamiltonianGroup.html">Hamiltonian Group</a>.

%F Let n = 2^e*o, where e = e(n) >= 0 and o = o(n) is an odd number. The number h(n) of Hamiltonian groups of order n is given by h(n) = 0, if e(n) < 3 and h(n) = a(o(n)), otherwise, where a(n) = A000688(n) denotes the number of Abelian groups of order n.

%F a(8*n) = A000688(A000265(n)), a(n) = 0 for n mod 8 <> 0. - _Andrew Howroyd_, Aug 08 2018

%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A021002 * A048651 / 4 = 0.16568181590156732257... . - _Amiram Eldar_, Sep 23 2023

%t orders[n_]:=Map[Last, FactorInteger[n]]; a[n_]:=Apply[Times, Map[PartitionsP, orders[n]]]; e[n_]:=n/ 2^IntegerExponent[n, 2]; h[n_]/;Mod[n, 8]==0:=a[e[n]]; h[n_]:=0;

%t (* Second program: *)

%t a[n_] := If[Mod[n, 8]==0, FiniteAbelianGroupCount[n/2^IntegerExponent[n, 2]], 0]; Array[a, 102] (* _Jean-François Alcover_, Sep 14 2019 *)

%o (PARI) a(n)={my(e=valuation(n, 2)); if(e<3, 0, my(f=factor(n/2^e)[, 2]); prod(i=1, #f, numbpart(f[i])))} \\ _Andrew Howroyd_, Aug 08 2018

%Y Cf. A000265, A000688, A021002, A048651, A104404, A104404, A104452, A104453.

%K nonn,easy,nice

%O 1,72

%A Boris Horvat (Boris.Horvat(AT)fmf.uni-lj.si), Gasper Jaklic (Gasper.Jaklic(AT)fmf.uni-lj.si), _Tomaz Pisanski_, Apr 19 2005