login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056626 Number of non-unitary square divisors of n. 3
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,32

LINKS

Michael De Vlieger, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = A046951(n) - 2^r, where r is the number of prime factors in the largest unitary prime divisor of n.

a(n) = A046951(n) - 2^(A162641(n)). -  David A. Corneth, Jul 28 2017

EXAMPLE

n = p^u prime power has u+1 square divisors of which 2 (i.e., 1 and n) are unitary but u-1 are not unitary, so a[p^u] = u - 1. E.g., n = 4^4 = 256, has 5 square divisors {1, 4, 16, 64, 256} of which {4, 16, 64} are not unitary, so a(256)=3.

MATHEMATICA

Table[DivisorSum[n, 1 &, And[IntegerQ@ Sqrt@ #, ! CoprimeQ[#, n/#]] &], {n, 105}] (* Michael De Vlieger, Jul 28 2017 *)

PROG

(PARI) a(n) = {my(f = factor(n), r=0, m = 0); prod(i=1, #f~, f[i, 2]>>1 + 1) - 2^(omega(f) - omega(core(f)))} \\ David A. Corneth, Jul 28 2017

(PARI) a(n) = sumdiv(n, d, if(gcd(d, n/d)!=1, issquare(d))); \\ Michel Marcus, Jul 29 2017

CROSSREFS

Cf. A000188, A008833, A034444, A046951, A055229, A056624, A162641.

Sequence in context: A104488 A244413 A318655 * A290081 A010103 A086078

Adjacent sequences:  A056623 A056624 A056625 * A056627 A056628 A056629

KEYWORD

nonn

AUTHOR

Labos Elemer, Aug 08 2000

EXTENSIONS

a(32) and a(96) corrected by Michael De Vlieger, Jul 29 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 01:39 EDT 2021. Contains 348065 sequences. (Running on oeis4.)