login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055229
Greatest common divisor of largest square dividing n and squarefree part of n.
35
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1
OFFSET
1,8
COMMENTS
Record values occur at cubes of squarefree numbers: a(A062838(n)) = A005117(n) and a(m) < A005117(n) for m < A062838(n). - Reinhard Zumkeller, Apr 09 2010
LINKS
FORMULA
a(n) = gcd[A008833(n), A007913(n)].
Multiplicative with a(p^e)=1 for even e, a(p)=1, a(p^e)=p for odd e>1. - Vladeta Jovovic, Apr 30 2002
A220218(a(n)) = 1; A060476(a(n)) > 1 for n > 1. - Reinhard Zumkeller, Nov 30 2015
a(n) = core(n)*rad(n/core(n))/rad(n), where core = A007913 and rad = A007947. - Conjecture by Velin Yanev, proof by David J. Seal, Sep 19 2017
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} ((p^3 + p^2 + p - 1)/(p^2 * (p + 1))) = 1.2249749939341923764... . - Amiram Eldar, Oct 08 2022
MATHEMATICA
a[n_] := With[{sf = Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 2]}& /@ FactorInteger[n])}, GCD[sf, n/sf]]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Feb 05 2014 *)
PROG
(PARI) a(n)=my(c=core(n)); gcd(c, n/c) \\ Charles R Greathouse IV, Nov 20 2012
(Haskell)
a055229 n = product $ zipWith (^) ps (map (flip mod 2) es) where
(ps, es) = unzip $
filter ((> 1) . snd) $ zip (a027748_row n) (a124010_row n)
-- Reinhard Zumkeller, Oct 27 2015
KEYWORD
nice,nonn,mult
AUTHOR
Labos Elemer, Jun 21 2000
STATUS
approved