login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062838
Cubes of squarefree numbers.
24
1, 8, 27, 125, 216, 343, 1000, 1331, 2197, 2744, 3375, 4913, 6859, 9261, 10648, 12167, 17576, 24389, 27000, 29791, 35937, 39304, 42875, 50653, 54872, 59319, 68921, 74088, 79507, 97336, 103823, 132651, 148877, 166375, 185193, 195112, 205379, 226981, 238328
OFFSET
1,2
COMMENTS
Cubefull numbers (A036966) all of whose nonunitary divisors are not cubefull (A362147). - Amiram Eldar, May 13 2023
LINKS
Vincenzo Librandi and T. D. Noe, Table of n, a(n) for n = 1..1000
FORMULA
A055229(a(n)) = A005117(n) and A055229(m) < A005117(n) for m < a(n). - Reinhard Zumkeller, Apr 09 2010
a(n) = A005117(n)^3. - R. J. Mathar, Dec 03 2015
{a(n)} = {A225546(A000400(n)) : n >= 0}, where {a(n)} denotes the set of integers in the sequence. - Peter Munn, Oct 31 2019
Sum_{n>=1} 1/a(n) = zeta(3)/zeta(6) = 945*zeta(3)/Pi^6 (A157289). - Amiram Eldar, May 22 2020
MATHEMATICA
Select[Range[70], SquareFreeQ]^3 (* Harvey P. Dale, Jul 20 2011 *)
PROG
(PARI) for(n=1, 35, if(issquarefree(n), print(n*n^2)))
(PARI) a(n) = my(m, c); if(n<=1, n==1, c=1; m=1; while(c<n, m++; if(issquarefree(m), c++)); m^3); \\ Altug Alkan, Dec 03 2015
(Python)
from math import isqrt
from sympy import mobius
def A062838(n):
def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
m, k = n, f(n)
while m != k: m, k = k, f(k)
return m**3 # Chai Wah Wu, Sep 11 2024
CROSSREFS
Other powers of squarefree numbers: A005117(1), A062503(2), A113849(4), A072774(all).
A329332 column 3 in ascending order.
Sequence in context: A030160 A030162 A153147 * A240859 A277047 A046452
KEYWORD
nonn,easy
AUTHOR
Jason Earls, Jul 21 2001
EXTENSIONS
More terms from Dean Hickerson, Jul 24 2001
More terms from Vladimir Joseph Stephan Orlovsky, Aug 15 2008
STATUS
approved