login
A104485
Primes p = p(k) such that prime(k) + 2 and prime(k+1) + 2 are both semiprimes.
1
19, 31, 47, 83, 109, 113, 127, 199, 251, 257, 293, 353, 401, 443, 467, 479, 487, 491, 499, 503, 557, 571, 577, 647, 677, 743, 761, 787, 829, 863, 911, 937, 941, 947, 971, 977, 983, 1109, 1187, 1193, 1291, 1327, 1361, 1381, 1399, 1459, 1499, 1553, 1559
OFFSET
1,1
LINKS
EXAMPLE
19 is a term because prime(8) + 2 = 19 + 2 = 21 = 3*7 and prime(9) + 2 = 25 = 5*5.
MATHEMATICA
fQ[n_] := Plus @@ Flatten[ Table[ #[[2]], {1}] & /@ FactorInteger[n]] == 2; Prime /@ Select[ Range[ 270], fQ[ Prime[ # ] + 2] && fQ[ Prime[ # + 1] + 2] &] (* Robert G. Wilson v, Apr 19 2005 *)
Select[Prime[Range[250]], PrimeOmega[#+2]==PrimeOmega[NextPrime[#]+2]==2&] (* Harvey P. Dale, Apr 01 2024 *)
CROSSREFS
Cf. A063637.
Sequence in context: A104006 A117065 A006035 * A276569 A276447 A214796
KEYWORD
easy,nonn
AUTHOR
Giovanni Teofilatto, Apr 19 2005
EXTENSIONS
Corrected and extended by Robert G. Wilson v, Apr 19 2005
STATUS
approved