login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063637
Primes p such that p+2 is a semiprime.
19
2, 7, 13, 19, 23, 31, 37, 47, 53, 67, 83, 89, 109, 113, 127, 131, 139, 157, 167, 181, 199, 211, 233, 251, 257, 263, 293, 307, 317, 337, 353, 359, 379, 389, 401, 409, 443, 449, 467, 479, 487, 491, 499, 503, 509, 541, 557, 563, 571, 577, 587, 631, 647, 653, 677
OFFSET
1,1
COMMENTS
Primes of the form p*q - 2, where p and q are primes.
Union of A049002 and A115093. - T. D. Noe, Mar 01 2006
REFERENCES
J.-R. Chen, On the representation of a large even integer as the sum of a prime and a product of at most two primes, Sci. Sinica 16 (1973), 157-176.
LINKS
K. D. Bajpai, Table of n, a(n) for n = 1..14190 (first 1000 terms from T. D. Noe)
P. Pollack, Analytic and Combinatorial Number Theory Course Notes, p. 146. [?Broken link]
P. Pollack, Analytic and Combinatorial Number Theory Course Notes, p. 146.
T. Tao, Obstructions to uniformity and arithmetic patterns in the primes, arXiv:math/0505402 [math.NT], 2005.
FORMULA
a(n) = A062721(n) - 2.
A010051(a(n)) * A064911(a(n) + 2) = 1. - Reinhard Zumkeller, Nov 15 2011
EXAMPLE
From K. D. Bajpai, Sep 06 2014: (Start)
a(3) = 13, which is prime, and 13 + 2 = 15 = 3 * 5, which is a semiprime.
a(4) = 19, which is prime, and 19 + 2 = 21 = 3 * 7, which is a semiprime.
(End)
MAPLE
select(t -> isprime(t) and numtheory:-bigomega(t+2)=2, [2, seq(2*i+1, i=1..500)]); # Robert Israel, Sep 07 2014
MATHEMATICA
f[n_] := Plus @@ Flatten[ Table[ # [[2]], {1}] & /@ FactorInteger[ n]]; Select[ Prime[ Range[ 123]], f[ # + 2] == 2 &] (* Robert G. Wilson v, Apr 30 2005 *)
Select[Prime[Range[500]], PrimeOmega[#+2]==2&] (* K. D. Bajpai, Sep 06 2014 *)
PROG
(PARI) { n=0; for (m=1, 10^9, p=prime(m); if (bigomega(p + 2) == 2, write("b063637.txt", n++, " ", p); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 26 2009
(Haskell)
a063637 n = a063637_list !!(n-1)
a063637_list = filter ((== 1) . a064911 . (+ 2)) a000040_list
-- Reinhard Zumkeller, Nov 15 2011
CROSSREFS
Cf. A109611 (Chen primes).
Sequence in context: A007821 A156007 A067774 * A216526 A020623 A109346
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 21 2001
STATUS
approved