login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063638
Primes p such that p-2 is a semiprime.
19
11, 17, 23, 37, 41, 53, 59, 67, 71, 79, 89, 97, 113, 131, 157, 163, 179, 211, 223, 239, 251, 269, 293, 307, 311, 331, 337, 367, 373, 379, 383, 397, 409, 419, 439, 449, 487, 491, 499, 503, 521, 547, 593, 599, 613, 631, 673, 683, 691, 701, 709, 719, 733, 739
OFFSET
1,1
COMMENTS
Primes of form p*q + 2, where p and q are primes.
11 is the only prime of this form where p=q. For prime p>3, 3 divides p^2+2. - T. D. Noe, Mar 01 2006
The asymptotic growth of this sequence is relevant for A204142. We have a(10^k) = (11, 79, 1571, 27961, 407741, 5647823, ...). - M. F. Hasler, Feb 13 2012
LINKS
FORMULA
a(n) = A241809(n) + 2. - Hugo Pfoertner, Oct 30 2023
MATHEMATICA
Take[Select[ # + 2 & /@ Union[Flatten[Outer[Times, Prime[Range[100]], Prime[Range[100]]]]], PrimeQ], 60]
Select[Prime[Range[200]], PrimeOmega[#-2]==2&] (* Paolo Xausa, Oct 30 2023 *)
PROG
(PARI) n=0; for (m=2, 10^9, p=prime(m); if (bigomega(p - 2) == 2, write("b063638.txt", n++, " ", p); if (n==1000, break))) \\ Harry J. Smith, Aug 26 2009
(PARI) forprime(p=3, 9999, bigomega(p-2)==2 & print1(p", "))
(PARI) p=2; for(n=1, 1e4, until(bigomega(-2+p=nextprime(p+1))==2, ); write("b063638.txt", n" "p)) \\ M. F. Hasler, Feb 13 2012
(PARI) list(lim)=my(v=List(), t); forprime(p=3, (lim-2)\3, forprime(q=3, min((lim-2)\p, p), t=p*q+2; if(isprime(t), listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Aug 05 2016
(Haskell)
a063638 n = a063638_list !! (n-1)
a063638_list = map (+ 2) $ filter ((== 1) . a064911) a040976_list
-- Reinhard Zumkeller, Feb 22 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 21 2001
STATUS
approved