login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063640
Primes of form p*q*r + 1, where p, q and r are primes.
5
13, 19, 29, 31, 43, 53, 67, 71, 79, 103, 131, 139, 149, 173, 191, 223, 239, 269, 283, 293, 311, 317, 367, 389, 419, 431, 439, 443, 499, 509, 557, 599, 607, 619, 643, 647, 653, 659, 683, 743, 773, 787, 797, 823, 827, 907, 947, 971, 1031, 1039, 1087, 1091
OFFSET
1,1
COMMENTS
Odd primes p such that (p-1)/2 is a semiprime. - Robert G. Wilson v, Sep 01 2007
LINKS
MAPLE
q:= n-> isprime(n) and numtheory[bigomega](n-1)=3:
select(q, [$2..1100])[]; # Alois P. Heinz, Mar 08 2023
MATHEMATICA
Take[ Select[ Union@ Flatten@ Table[ Prime@p*Prime@q*Prime@r + 1, {p, 48}, {q, p}, {r, q}], PrimeQ@ # &], 53] (* Or *)
semiPrimeQ[x_] := Plus @@ Last /@ FactorInteger[x] == 2; Select[Prime@ Range@ 182, semiPrimeQ[(# - 1)/2] &] (* Robert G. Wilson v, Sep 01 2007 *)
2#+1&/@Select[Table[(n-1)/2, {n, Prime[Range[200]]}], PrimeOmega[#]==2&] (* Harvey P. Dale, Oct 11 2018 *)
PROG
(PARI) n=0; for (m=1, 10^9, p=prime(m); if (bigomega(p - 1) == 3, write("b063640.txt", n++, " ", p); if (n==1000, break)) ) \\ Harry J. Smith, Aug 26 2009
CROSSREFS
A090866 is a subsequence.
Sequence in context: A123840 A258589 A103804 * A092104 A281483 A094105
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 21 2001
STATUS
approved