OFFSET
1,1
COMMENTS
Odd primes p such that (p-1)/2 is a semiprime. - Robert G. Wilson v, Sep 01 2007
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..1000
MAPLE
q:= n-> isprime(n) and numtheory[bigomega](n-1)=3:
select(q, [$2..1100])[]; # Alois P. Heinz, Mar 08 2023
MATHEMATICA
Take[ Select[ Union@ Flatten@ Table[ Prime@p*Prime@q*Prime@r + 1, {p, 48}, {q, p}, {r, q}], PrimeQ@ # &], 53] (* Or *)
semiPrimeQ[x_] := Plus @@ Last /@ FactorInteger[x] == 2; Select[Prime@ Range@ 182, semiPrimeQ[(# - 1)/2] &] (* Robert G. Wilson v, Sep 01 2007 *)
2#+1&/@Select[Table[(n-1)/2, {n, Prime[Range[200]]}], PrimeOmega[#]==2&] (* Harvey P. Dale, Oct 11 2018 *)
PROG
(PARI) n=0; for (m=1, 10^9, p=prime(m); if (bigomega(p - 1) == 3, write("b063640.txt", n++, " ", p); if (n==1000, break)) ) \\ Harry J. Smith, Aug 26 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 21 2001
STATUS
approved