login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094105
Primes of the form prime(k) + 2*prime(k+1).
6
13, 19, 29, 37, 47, 127, 137, 181, 283, 307, 317, 367, 389, 541, 563, 577, 587, 677, 743, 811, 839, 907, 929, 937, 947, 1031, 1093, 1283, 1297, 1453, 1489, 1567, 1801, 1847, 1913, 2027, 2347, 2381, 2467, 2477, 2617, 2647, 2657, 2729, 2749, 2777, 2803, 2819
OFFSET
1,1
COMMENTS
No intersection with A094104 (Primes of the form 2*prime(m)+prime(m+1)): an integer of the form 2*prime(m)+prime(m+1) cannot be of the form prime(n)+2*prime(n+1). - Zak Seidov, Feb 16 2012
LINKS
Zak Seidov, Table of n, a(n) for n = 1..1001 [a(273), a(274) corrected by Georg Fischer, Jan 03 2025]
EXAMPLE
a(9) = 89 + 2*97 = 283.
MATHEMATICA
f[n_] := (Prime[n] + 2Prime[n + 1]); f[ # ] & /@ Select[Range[160], PrimeQ[f[ # ]] &] (* Robert G. Wilson v, May 07 2004 *)
Select[#[[1]]+2*#[[2]]&/@Partition[Prime[Range[200]], 2, 1], PrimeQ] (* Harvey P. Dale, May 08 2015 *)
Select[Table[Prime[n] + 2 Prime[n + 1], {n, 200}], PrimeQ] (* Vincenzo Librandi, Jul 25 2015 *)
PROG
(PARI) q=2; forprime(p=3, 1000, if(isprime(r=q+2*p), print1(r, ", ")); q=p)
(Magma) [a: n in [1..200] | IsPrime(a) where a is NthPrime(n) + 2*NthPrime(n+1)]; // Vincenzo Librandi, Jul 25 2015
CROSSREFS
Sequence in context: A063640 A092104 A281483 * A073620 A089391 A038954
KEYWORD
nonn,easy,changed
AUTHOR
Giovanni Teofilatto, May 02 2004
EXTENSIONS
Corrected and extended by Klaus Brockhaus and Robert G. Wilson v, May 07 2004
STATUS
approved