OFFSET
1,1
COMMENTS
Same as Chebyshev's subsequence of the primes with primitive root 2, because Chebyshev showed that 2 is a primitive root of all primes p = 4*q+1 with q prime. If the sequence is infinite, then Artin's conjecture ("every nonsquare positive integer n is a primitive root of infinitely many primes q") is true for n = 2. - Jonathan Sondow, Feb 04 2013
REFERENCES
Albert H. Beiler: Recreations in the theory of numbers. New York: Dover, (2nd ed.) 1966, p. 102, nr. 5.
P. L. Chebyshev, Theory of congruences. Elements of number theory, Chelsea, 1972, p. 306.
LINKS
FORMULA
a(n) = 4*A023212(n) + 1.
MATHEMATICA
Select[Prime[Range[1000]], Mod[#, 4]==1 && PrimeQ[(#-1)/4] &] (* G. C. Greubel, Feb 08 2019 *)
PROG
(Magma) f:=[n: n in [1..2000] | IsPrime(n) and IsPrime(4*n+1)]; [4*f[n] + 1: n in [1..50]]; // G. C. Greubel, Feb 08 2019
(PARI) isok(p) = isprime(p) && !frac(q=(p-1)/4) && isprime(q); \\ Michel Marcus, Feb 09 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Feb 12 2004
STATUS
approved