The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A090867 Number of partitions of n such that the set of even parts has only one element. 12
 0, 0, 1, 1, 3, 4, 6, 9, 13, 18, 23, 32, 42, 55, 69, 89, 112, 141, 175, 217, 266, 326, 396, 480, 581, 697, 834, 996, 1183, 1402, 1660, 1954, 2297, 2694, 3150, 3674, 4280, 4970, 5762, 6669, 7701, 8876, 10219, 11737, 13460, 15418, 17628, 20125, 22951, 26128, 29709 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Conjecture: a(n) is also the difference between the number of parts in the odd partitions of n and the number of parts in the distinct partitions of n (offset 0). For example, if n = 5, there are 9 parts in the odd partitions of 5 (5, 311, 11111) and 5 parts in the distinct partitions of 5 (5, 41, 32), with difference 4. - George Beck, Apr 22 2017 George E. Andrews has kindly informed me that he has proved this conjecture and the result will be included in his article "Euler's Partition Identity and Two Problems of George Beck" which will appear in The Mathematics Student, 86, Nos. 1-2, January - June (2017). - George Beck, Apr 23 2017 a(n) is the number of partitions of n with exactly one repeated part. - Andrew Howroyd, Feb 14 2021 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..5000 from Alois P. Heinz) Tewodros Amdeberhan, George E. Andrews, and Cristina Ballantine, Refinements of Beck-type partition identities, arXiv:2204.00105 [math.CO], 2022. George E. Andrews, Euler's Partition Identity and Two Problems of George Beck, The Mathematics Student, 86, 1-2:115-119 (2017); Preprint. Cristina Ballantine and Richard Bielak, Combinatorial proofs of two Euler type identities due to Andrews, arXiv:1803.06394 [math.CO], 2018. Cristina Ballantine and Amanda Welch, Beck-type identities for Euler pairs of order r, arXiv:2006.02335 [math.NT], 2020. Cristina Ballantine and Amanda Welch, Beck-type identities: new combinatorial proofs and a theorem for parts congruent to t mod r, arXiv:2011.08220 [math.CO], 2020. Cristina Ballantine and Amanda Welch, Beck-type companion identities for Franklin's identity, arXiv:2101.06260 [math.CO], 2021. Cristina Ballantine and Amanda Welch, Beck-type identities: new combinatorial proofs and a modular refinement, Ramanujan J. (2021). Cristina Ballantine and Mircea Merca, Combinatorial proofs of two theorems related to the number of even parts in all partitions of n into distinct parts, Ramanujan J., 54:1 (2021), 107-112. Cristina Ballantine, Hannah E. Burson, Amanda Folsom, Chi-Yun Hsu, Isabella Negrini and Boya Wen, On a Partition Identity of Lehmer, arXiv:2109.00609 [math.CO], 2021. Cristina Ballantine and Amanda Folsom, On the number of parts in all partitions enumerated by the Rogers-Ramanujan identities, arXiv:2303.03330 [math.NT], 2023. Shishuo Fu and Dazhao Tang, Generalizing a partition theorem of Andrews, arXiv:1705.05046 [math.CO], 2017. Jia Huang, Compositions with restricted parts, arXiv:1812.11010 [math.CO], 2018. Also Discrete Masth., 343 (2020), # 111875. Runqiao Li and Andrew Y. Z. Wang, The dual form of Beck type identities, Ramanujan J. (2021). Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75. Mircea Merca, On the partitions into distinct parts and odd parts, arXiv:2005.03619 [math.CO], 2020. Aritro Pathak, On certain partition bijections related to Euler's partition problem, arXiv:2004.03596 [math.CO], 2020. Also Discrete Mathematics 345.2 (2022): 112673. Jane Y. X. Yang, Combinatorial proofs and generalizations on conjectures related with Euler's partition theorem, arXiv:1801.06815 [math.CO], 2018. FORMULA G.f.: Sum_{m>0} x^(2*m)/(1-x^(2*m))/Product_{m>0} (1-x^(2*m-1)). a(n) ~ 3^(1/4) * (2*gamma + log(3*n/Pi^2)) * exp(Pi*sqrt(n/3)) / (8*Pi*n^(1/4)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 25 2018 a(n) = A341494(n) + A341495(n) = A341496(n) + A341497(n). - Andrew Howroyd, Feb 14 2021 MAPLE b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<1, 0, b(n, i-1, t)+`if`(i>n or t=1 and i::even, 0, add(b(n-i*j, i-1, `if`(i::even, 1, t)), j=1..n/i)))) end: a:= n-> b(n\$2, 0): seq(a(n), n=0..70); # Alois P. Heinz, Jun 17 2016 A090867 := proc(n) add(numtheory[tau](k)*A000009(n-2*k), k=1..n/2) ; end proc: # R. J. Mathar, Jun 18 2016 MATHEMATICA f[n_] := Count[ Plus @@@ Mod[ Union /@ IntegerPartitions[n] + 1, 2], 1]; Table[ f[n], {n, 0, 50}] (* Robert G. Wilson v, Feb 16 2004 *) a[n_] := Sum[DivisorSigma[0, k] PartitionsQ[n-2k], {k, 1, n/2}]; a /@ Range[0, 70] (* Jean-François Alcover, May 24 2021, after R. J. Mathar *) PROG (PARI) seq(n)={Vec(sum(k=1, n\2, x^(2*k)/(1-x^(2*k)) + O(x*x^n))/prod(k=1, n\2, 1-x^(2*k-1) + O(x*x^n)), -(n+1))} \\ Andrew Howroyd, Feb 13 2021 CROSSREFS Cf. A038348, A265251, A341494, A341495, A341496, A341497. Sequence in context: A289117 A355697 A167928 * A152950 A005626 A227561 Adjacent sequences: A090864 A090865 A090866 * A090868 A090869 A090870 KEYWORD easy,nonn AUTHOR Vladeta Jovovic, Feb 12 2004 EXTENSIONS More terms from Robert G. Wilson v, Feb 16 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 07:06 EDT 2024. Contains 372926 sequences. (Running on oeis4.)