The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A341494 Number of partitions of n into an even number of parts such that the set of even parts has only one element. 5
 0, 0, 0, 1, 1, 3, 1, 7, 4, 13, 6, 23, 12, 39, 20, 63, 34, 98, 53, 150, 82, 225, 124, 329, 184, 475, 267, 676, 381, 948, 539, 1317, 752, 1810, 1038, 2460, 1417, 3319, 1920, 4442, 2578, 5897, 3437, 7780, 4547, 10200, 5980, 13285, 7815, 17214, 10154, 22191, 13122 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 LINKS Andrew Howroyd, Table of n, a(n) for n = 0..1000 Cristina Ballantine and Mircea Merca, Combinatorial proofs of two theorems related to the number of even parts in all partitions of n into distinct parts, Ramanujan J., 54:1 (2021), 107-112. FORMULA G.f.: (P(x,1) + P(x,-1))/2 where P(x,c) = (Sum_{k>=1} c*x^(2*k)/(1-c*x^(2*k))) / (Product_{k>=1} 1-c*x^(2*k-1)). a(n) = A090867(n) - A341495(n). EXAMPLE The a(3) = 1 partition is: 1+2. The a(4) = 1 partition is: 2+2. The a(5) = 3 partitions are: 1+4, 2+3, 1+1+1+2. MATHEMATICA P[n_, c_] := c*Sum[x^(2k)/(1 - c*x^(2k)) + O[x]^n, {k, 1, n/2}]/ Product[1 - c*x^(2k - 1) + O[x]^n, {k, 1, n/2}]; CoefficientList[(P[100, 1] + P[100, -1])/2, x] (* Jean-François Alcover, May 24 2021, from PARI code *) PROG (PARI) P(n, c)={c*sum(k=1, n\2, x^(2*k)/(1-c*x^(2*k)) + O(x*x^n))/prod(k=1, n\2, 1-c*x^(2*k-1) + O(x*x^n))} seq(n)={Vec(P(n, 1) + P(n, -1), -(n+1))/2} CROSSREFS Cf. A090867, A341495, A341496, A341497. Sequence in context: A010603 A269423 A328461 * A210198 A271258 A100584 Adjacent sequences: A341491 A341492 A341493 * A341495 A341496 A341497 KEYWORD nonn AUTHOR Andrew Howroyd, Feb 13 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 23:01 EST 2023. Contains 359939 sequences. (Running on oeis4.)