login
A328461
a(n) = A276156(n) / A002110(A007814(n)).
13
1, 1, 3, 1, 7, 4, 9, 1, 31, 16, 33, 6, 37, 19, 39, 1, 211, 106, 213, 36, 217, 109, 219, 8, 241, 121, 243, 41, 247, 124, 249, 1, 2311, 1156, 2313, 386, 2317, 1159, 2319, 78, 2341, 1171, 2343, 391, 2347, 1174, 2349, 12, 2521, 1261, 2523, 421, 2527, 1264, 2529, 85, 2551, 1276, 2553, 426, 2557, 1279, 2559, 1, 30031, 15016, 30033, 5006
OFFSET
1,3
COMMENTS
A276156(n) converts the binary expansion of n to a number whose primorial base representation has the same digits of 0's and 1's, thus each one of its terms is a unique sum of distinct primorial numbers. In this sequence that sum is then divided by the largest primorial that divides it, which only depends on the position of the least significant 1-bit in the binary expansion of the original n, that is, the 2-adic valuation of n.
FORMULA
a(n) = A276156(n) / A002110(A007814(n)).
a(n) = A111701(A276156(n)).
PROG
(PARI)
A002110(n) = prod(i=1, n, prime(i));
A276156(n) = { my(p=2, pr=1, s=0); while(n, if(n%2, s += pr); n >>= 1; pr *= p; p = nextprime(1+p)); (s); };
A328461(n) = (A276156(n)/A002110(valuation(n, 2)));
CROSSREFS
Cf. A328462 (bisection, also row 1 of array A328464 which shows the same information in tabular form).
Sequence in context: A283764 A010603 A269423 * A341494 A210198 A271258
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 16 2019
STATUS
approved