login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328464
Square array A(n,k) = A276156((2^(n-1)) * (2k-1)) / A002110(n-1), read by descending antidiagonals.
13
1, 3, 1, 7, 4, 1, 9, 16, 6, 1, 31, 19, 36, 8, 1, 33, 106, 41, 78, 12, 1, 37, 109, 386, 85, 144, 14, 1, 39, 121, 391, 1002, 155, 222, 18, 1, 211, 124, 421, 1009, 2432, 235, 324, 20, 1, 213, 1156, 426, 1079, 2443, 4200, 341, 438, 24, 1, 217, 1159, 5006, 1086, 2575, 4213, 7430, 457, 668, 30, 1, 219, 1171, 5011, 17018, 2586, 4421, 7447, 12674, 691, 900, 32, 1
OFFSET
1,2
COMMENTS
Array is read by falling antidiagonals with n (row) and k (column) ranging as: (n,k) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), ...
Row n contains all such sums of distinct primorials whose least significant summand is A002110(n-1), with each sum divided by that least significant primorial, which is also the largest primorial which divides that sum.
FORMULA
A(n,k) = A276156((2^(n-1)) * (2k-1)) / A002110(n-1).
a(n) = A328461(A135764(n)). [When all sequences are considered as one-dimensional]
EXAMPLE
Top left 9 X 11 corner of the array:
1: | 1, 3, 7, 9, 31, 33, 37, 39, 211, 213, 217
2: | 1, 4, 16, 19, 106, 109, 121, 124, 1156, 1159, 1171
3: | 1, 6, 36, 41, 386, 391, 421, 426, 5006, 5011, 5041
4: | 1, 8, 78, 85, 1002, 1009, 1079, 1086, 17018, 17025, 17095
5: | 1, 12, 144, 155, 2432, 2443, 2575, 2586, 46190, 46201, 46333
6: | 1, 14, 222, 235, 4200, 4213, 4421, 4434, 96578, 96591, 96799
7: | 1, 18, 324, 341, 7430, 7447, 7753, 7770, 215442, 215459, 215765
8: | 1, 20, 438, 457, 12674, 12693, 13111, 13130, 392864, 392883, 393301
9: | 1, 24, 668, 691, 20678, 20701, 21345, 21368, 765050, 765073, 765717
PROG
(PARI)
up_to = 105;
A002110(n) = prod(i=1, n, prime(i));
A276156(n) = { my(p=2, pr=1, s=0); while(n, if(n%2, s += pr); n >>= 1; pr *= p; p = nextprime(1+p)); (s); };
A328464sq(n, k) = (A276156((2^(n-1)) * (k+k-1)) / A002110(n-1));
A328464list(up_to) = { my(v = vector(up_to), i=0); for(a=1, oo, for(col=1, a, i++; if(i > up_to, return(v)); v[i] = A328464sq(col, (a-(col-1))))); (v); };
v328464 = A328464list(up_to);
A328464(n) = v328464[n];
CROSSREFS
Cf. A328463 (transpose).
Column 2: A008864.
Column 3: A023523 (after its initial term).
Column 4: A286624.
Cf. also arrays A276945, A286625.
Sequence in context: A095868 A140962 A013602 * A323956 A086272 A104709
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Oct 16 2019
STATUS
approved