login
A095868
Values x associated with A096545(n), sorted on z, then on y and finally on x.
5
3, 1, 7, 3, 18, 4, 11, 6, 27, 3, 2, 16, 29, 15, 12, 22, 7, 36, 50, 34, 38, 58, 19, 14, 31, 25, 28, 26, 38, 20, 45, 21, 32, 25, 17, 25, 15, 19, 33, 29, 50, 23, 86, 94, 19, 12, 49, 13, 23, 16, 3, 9, 44, 13, 72, 5, 38, 69, 44, 3, 12, 107, 31, 1, 71, 1, 22, 96, 65, 48, 69, 48, 46, 59
OFFSET
1,1
COMMENTS
For 0<x<y<z, the primitive quadruples (x,y,z,w) satisfy x^3 + y^3 + z^3 = w^3.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..13798 (terms corresponding to z <= 8000)
Fred Richman, Sums of Three Cubes
EXAMPLE
a(1)=3 corresponding to the quadruple (3,4,5,6).
MATHEMATICA
s[w_] := Solve[0 < x < y < z && x^3 + y^3 + z^3 == w^3 && GCD[x, y, z, w] == 1, {x, y, z}, Integers];
xyzw = Reap[For[w = 1, w <= 200, w++, sw = s[w]; If[sw != {}, Print[{x, y, z, w} /. sw; Sow[{x, y, z, w} /. sw ]]]]][[2, 1]] // Flatten[#, 1]&;
SortBy[xyzw, {#[[3]]&, #[[2]]&, #[[1]]&}][[All, 1]] (* Jean-François Alcover, Mar 06 2020 *)
CROSSREFS
Primitive quadruples (x, y, z, w) = (A095868, A095867, A096545, A096546).
Sequence in context: A342268 A316742 A189050 * A140962 A013602 A328464
KEYWORD
nonn
AUTHOR
Ray Chandler, Jun 28 2004
STATUS
approved