login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210198
Triangle of coefficients of polynomials v(n,x) jointly generated with A210197; see the Formula section.
3
1, 3, 1, 7, 4, 15, 12, 1, 31, 32, 6, 63, 80, 24, 1, 127, 192, 80, 8, 255, 448, 240, 40, 1, 511, 1024, 672, 160, 10, 1023, 2304, 1792, 560, 60, 1, 2047, 5120, 4608, 1792, 280, 12, 4095, 11264, 11520, 5376, 1120, 84, 1, 8191, 24576, 28160, 15360, 4032
OFFSET
1,2
COMMENTS
Row sums: A005409
Column 1: -1+2^n
Alternating row sums: 1, 2,3,4,5,6,..., A000027
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=u(n-1,x)+v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
3....1
15...12...1
31...32...6
63...80...24...1
First three polynomials v(n,x): 1, 3 + x , 15 + 12x + x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210197 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210198 *)
Table[u[n, x] /. x -> 1, {n, 1, z}] (* A048739 *)
Table[v[n, x] /. x -> 1, {n, 1, z}] (* A005409 *)
Table[u[n, x] /. x -> -1, {n, 1, z}] (* A000217 *)
Table[v[n, x] /. x -> -1, {n, 1, z}] (* A000027 *)
CROSSREFS
Sequence in context: A269423 A328461 A341494 * A271258 A100584 A185877
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 18 2012
STATUS
approved