login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of coefficients of polynomials v(n,x) jointly generated with A210197; see the Formula section.
3

%I #6 Oct 17 2012 10:05:03

%S 1,3,1,7,4,15,12,1,31,32,6,63,80,24,1,127,192,80,8,255,448,240,40,1,

%T 511,1024,672,160,10,1023,2304,1792,560,60,1,2047,5120,4608,1792,280,

%U 12,4095,11264,11520,5376,1120,84,1,8191,24576,28160,15360,4032

%N Triangle of coefficients of polynomials v(n,x) jointly generated with A210197; see the Formula section.

%C Row sums: A005409

%C Column 1: -1+2^n

%C Alternating row sums: 1, 2,3,4,5,6,..., A000027

%C For a discussion and guide to related arrays, see A208510.

%F u(n,x)=u(n-1,x)+v(n-1,x)+1,

%F v(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1,

%F where u(1,x)=1, v(1,x)=1.

%e First five rows:

%e 1

%e 3....1

%e 15...12...1

%e 31...32...6

%e 63...80...24...1

%e First three polynomials v(n,x): 1, 3 + x , 15 + 12x + x^2.

%t u[1, x_] := 1; v[1, x_] := 1; z = 16;

%t u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;

%t v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1;

%t Table[Expand[u[n, x]], {n, 1, z/2}]

%t Table[Expand[v[n, x]], {n, 1, z/2}]

%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

%t TableForm[cu]

%t Flatten[%] (* A210197 *)

%t Table[Expand[v[n, x]], {n, 1, z}]

%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

%t TableForm[cv]

%t Flatten[%] (* A210198 *)

%t Table[u[n, x] /. x -> 1, {n, 1, z}] (* A048739 *)

%t Table[v[n, x] /. x -> 1, {n, 1, z}] (* A005409 *)

%t Table[u[n, x] /. x -> -1, {n, 1, z}] (* A000217 *)

%t Table[v[n, x] /. x -> -1, {n, 1, z}] (* A000027 *)

%Y Cf. A210197, A208510.

%K nonn,tabl

%O 1,2

%A _Clark Kimberling_, Mar 18 2012