login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210197
Triangle of coefficients of polynomials u(n,x) jointly generated with A210198; see the Formula section.
4
1, 3, 7, 1, 15, 5, 31, 17, 1, 63, 49, 7, 127, 129, 31, 1, 255, 321, 111, 9, 511, 769, 351, 49, 1, 1023, 1793, 1023, 209, 11, 2047, 4097, 2815, 769, 71, 1, 4095, 9217, 7423, 2561, 351, 13, 8191, 20481, 18943, 7937, 1471, 97, 1, 16383, 45057, 47103
OFFSET
1,2
COMMENTS
Column 1: -1+2^n
Row sums: A048739
Alternating row sums: triangular numbers, A000217
For a discussion and guide to related arrays, see A208510.
LINKS
K. Dilcher, K. B. Stolarsky, Nonlinear recurrences related to Chebyshev polynomials, The Ramanujan Journal, 2014, Online Oct. 2014, pp. 1-23. See Table 1.
FORMULA
u(n,x)=u(n-1,x)+v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
3
7....1
15...5
31...17...1
First three polynomials u(n,x): 1, 3, 7 + x.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210197 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210198 *)
Table[u[n, x] /. x -> 1, {n, 1, z}] (* A048739 *)
Table[v[n, x] /. x -> 1, {n, 1, z}] (* A005409 *)
Table[u[n, x] /. x -> -1, {n, 1, z}] (* A000217 *)
Table[v[n, x] /. x -> -1, {n, 1, z}] (* A000027 *)
CROSSREFS
Essentially the same as the triangle in A257597.
Sequence in context: A135561 A196231 A210037 * A324715 A316665 A110238
KEYWORD
nonn,tabf
AUTHOR
Clark Kimberling, Mar 18 2012
STATUS
approved