login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341493
a(n) = ( Product_{j=1..n} Product_{k=1..n+1} (4*sin((2*j-1)*Pi/n)^2 + 4*sin((2*k-1)*Pi/(n+1))^2) )^(1/4).
2
1, 2, 14, 50, 722, 9922, 401998, 19681538, 2415542018, 400448833106, 152849502772958, 83804387156528018, 100644292294423977842, 180483873668860889130642, 686161117968330536875295134, 4001215836806010384390623471618
OFFSET
0,2
COMMENTS
Number of perfect matchings in the graph C_n X C_{n+1} for n > 0.
LINKS
S. N. Perepechko, The number of perfect matchings on C_m X C_n graphs, (in Russian), Information Processes, 2016, V. 16, No. 4, pp. 333-361.
Eric Weisstein's World of Mathematics, Perfect Matching
Eric Weisstein's World of Mathematics, Torus Grid Graph
FORMULA
a(n) ~ 2^(3/4) * exp(G*n*(n+1)/Pi), where G is Catalan's constant A006752. - Vaclav Kotesovec, Feb 14 2021
MATHEMATICA
Table[Product[4*Sin[(2*j - 1)*Pi/n]^2 + 4*Sin[(2*k - 1)*Pi/(n+1)]^2, {k, 1, n+1}, {j, 1, n}]^(1/4), {n, 0, 15}] // Round (* Vaclav Kotesovec, Feb 14 2021 *)
PROG
(PARI) default(realprecision, 120);
a(n) = round(prod(j=1, n, prod(k=1, n+1, 4*sin((2*j-1)*Pi/n)^2+4*sin((2*k-1)*Pi/(n+1))^2))^(1/4));
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 13 2021
STATUS
approved