login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335586
Number of domino tilings of a 2n X 2n toroidal grid.
6
1, 8, 272, 90176, 311853312, 11203604497408, 4161957566985310208, 15954943354032349049274368, 630665326543010382995142219988992, 256955886436135671144699761794930161483776
OFFSET
0,2
COMMENTS
For n > 1, number of perfect matchings of the graph C_2n X C_2n.
LINKS
S. N. Perepechko, The number of perfect matchings on C_m X C_n graphs, (in Russian), Information Processes, 2016, V. 16, No. 4, pp. 333-361.
Eric Weisstein's World of Mathematics, Perfect Matching
Eric Weisstein's World of Mathematics, Torus Grid Graph
FORMULA
a(n) = 4 * Product_{j=1..n-1} Product_{k=1..n} (4*sin(j*Pi/n)^2 + 4*sin((2*k-1)*Pi/(2*n))^2) + 1/2 * Product_{1<=j,k<=n} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/(2*n))^2) = 4 * A341478(n)^2 + A341479(n)/2 for n > 0. - Seiichi Manyama, Feb 13 2021
a(n) ~ (1 + sqrt(2)) * exp(4*G*n^2/Pi), where G is Catalan's constant A006752. - Vaclav Kotesovec, Feb 14 2021
EXAMPLE
For n = 1, there are a(1) = 8 tilings (see the Links section for a diagram).
PROG
(PARI) default(realprecision, 120);
b(n) = round(prod(j=1, n-1, prod(k=1, n, 4*sin(j*Pi/n)^2+4*sin((2*k-1)*Pi/(2*n))^2)));
c(n) = round(prod(j=1, n, prod(k=1, n, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/(2*n))^2)));
a(n) = if(n==0, 1, 4*b(n)+c(n)/2); \\ Seiichi Manyama, Feb 13 2021
CROSSREFS
Number of perfect matchings of the graph C_2m X C_n: A162484 (m=1), A220864 (m=2), A232804 (m=3), A253678 (m=4), A281679 (m=5), A309018 (m=6).
Sequence in context: A129424 A274559 A338636 * A159496 A045479 A179570
KEYWORD
nonn
AUTHOR
Drake Thomas, Jan 26 2021
EXTENSIONS
More terms from Seiichi Manyama, Feb 13 2021
STATUS
approved