login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338636
G.f. A(x) satisfies: 1 = A(x) - x/(A(x) - 3^2*x/(A(x) - 5^2*x/(A(x) - 7^2*x/(A(x) - 9^2*x/(A(x) - ...))))), a continued fraction relation.
2
1, 1, 8, 272, 19480, 2353568, 429016872, 110046546096, 37825128764472, 16793443888112960, 9358539226503013960, 6397425528561882140240, 5264539843826571207135320, 5134140710880677886077086432, 5855644914993764696284947092840
OFFSET
0,3
LINKS
FORMULA
a(n) = 0 (mod 8) for n > 1 (conjecture).
For n > 0, a(n) = 1 (mod 3) iff n = A191107(k) for some k >= 1 (conjecture).
For n > 0, a(n) = 2 (mod 3) iff n = A186776(k) for some k >= 2 where A186776 is the Stanley sequence S(0,2) (conjecture).
a(n) ~ 2^(6*n + 1) * n^(2*n - 1/2) / (Pi^(2*n + 1/2) * exp(2*n)). - Vaclav Kotesovec, Nov 12 2020
EXAMPLE
G.f. A(x) = 1 + x + 8*x^2 + 272*x^3 + 19480*x^4 + 2353568*x^5 + 429016872*x^6 + 110046546096*x^7 + 37825128764472*x^8 + 16793443888112960*x^9 + ...
where
1 = A(x) - x/(A(x) - 3^2*x/(A(x) - 5^2*x/(A(x) - 7^2*x/(A(x) - 9^2*x/(A(x) - 11^2*x/(A(x) - 13^2*x/(A(x) - 15^2*x/(A(x) - 17^2*x/(A(x) - 19^2*x/(A(x) - ...)))))))))), a continued fraction relation.
PROG
(PARI) {a(n) = my(A=[1], CF=1); for(i=1, n, A=concat(A, 0); for(i=1, #A, CF = Ser(A) - (2*(#A-i)+1)^2*x/CF ); A[#A] = -polcoeff(CF, #A-1) ); A[n+1] }
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 04 2020
STATUS
approved