login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: 1 = A(x) - x/(A(x) - 3^2*x/(A(x) - 5^2*x/(A(x) - 7^2*x/(A(x) - 9^2*x/(A(x) - ...))))), a continued fraction relation.
2

%I #14 Nov 12 2020 12:20:00

%S 1,1,8,272,19480,2353568,429016872,110046546096,37825128764472,

%T 16793443888112960,9358539226503013960,6397425528561882140240,

%U 5264539843826571207135320,5134140710880677886077086432,5855644914993764696284947092840

%N G.f. A(x) satisfies: 1 = A(x) - x/(A(x) - 3^2*x/(A(x) - 5^2*x/(A(x) - 7^2*x/(A(x) - 9^2*x/(A(x) - ...))))), a continued fraction relation.

%H Paul D. Hanna, <a href="/A338636/b338636.txt">Table of n, a(n) for n = 0..150</a>

%F a(n) = 0 (mod 8) for n > 1 (conjecture).

%F For n > 0, a(n) = 1 (mod 3) iff n = A191107(k) for some k >= 1 (conjecture).

%F For n > 0, a(n) = 2 (mod 3) iff n = A186776(k) for some k >= 2 where A186776 is the Stanley sequence S(0,2) (conjecture).

%F a(n) ~ 2^(6*n + 1) * n^(2*n - 1/2) / (Pi^(2*n + 1/2) * exp(2*n)). - _Vaclav Kotesovec_, Nov 12 2020

%e G.f. A(x) = 1 + x + 8*x^2 + 272*x^3 + 19480*x^4 + 2353568*x^5 + 429016872*x^6 + 110046546096*x^7 + 37825128764472*x^8 + 16793443888112960*x^9 + ...

%e where

%e 1 = A(x) - x/(A(x) - 3^2*x/(A(x) - 5^2*x/(A(x) - 7^2*x/(A(x) - 9^2*x/(A(x) - 11^2*x/(A(x) - 13^2*x/(A(x) - 15^2*x/(A(x) - 17^2*x/(A(x) - 19^2*x/(A(x) - ...)))))))))), a continued fraction relation.

%o (PARI) {a(n) = my(A=[1],CF=1); for(i=1,n, A=concat(A,0); for(i=1,#A, CF = Ser(A) - (2*(#A-i)+1)^2*x/CF ); A[#A] = -polcoeff(CF,#A-1) );A[n+1] }

%o for(n=0,20,print1(a(n),", "))

%Y Cf. A338632, A158119.

%Y Cf. A191107, A186776.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Nov 04 2020