login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336214
a(n) = Sum_{k=0..n} k^n * binomial(n,k)^n, with a(0)=1.
5
1, 1, 8, 270, 41984, 30706250, 94770093312, 1336016204844832, 76829717664330940416, 19838680914222199482800274, 20521247958509575370600000000000, 94285013320530947020636486516362047300, 1715947732437668013396578734960052732361179136
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * exp(-1/4) * 2^(n^2 - n/2) * n^(n/2) / Pi^(n/2), where c = Sum_{k = -infinity..infinity} exp(-2*k*(k-1)) = exp(1/2) * sqrt(Pi/2) * EllipticTheta(3, -Pi/2, exp(-Pi^2/2)) = 2.036643566277677716389243890291939003151565... if n is even and c = Sum_{k = -infinity..infinity} exp(-2*k^2 + 1/2) = exp(1/2) * EllipticTheta(3, 0, exp(-2)) = 2.096087809957308346119920713317351288828811... if n is odd.
a(n) = n^n * A328812(n-1) for n > 0. - Seiichi Manyama, Jul 15 2020
MATHEMATICA
Flatten[{1, Table[Sum[k^n*Binomial[n, k]^n, {k, 1, n}], {n, 1, 15}]}]
PROG
(PARI) a(n) = if (n==0, 1, sum(k=0, n, k^n * binomial(n, k)^n)); \\ Michel Marcus, Jul 13 2020
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jul 12 2020
STATUS
approved