login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300047
E.g.f. L(x) satisfies: L(x) = log(1 + Integral exp( L(4*x)/2 ) dx).
2
1, 1, 8, 270, 35472, 18318288, 37611139104, 308338698386160, 10105807430398162176, 1324669305373789482964224, 694520145536868530329362481152, 1456521257891915020152240334073326080, 12218201898131114878545053215635303915614208, 409974971372215896118360380056730403849666983370752
OFFSET
1,3
FORMULA
E.g.f.: L(x) = log(G(x)) where G(x) is the e.g.f. of A300045.
EXAMPLE
E.g.f.: L(x) = x + x^2/2! + 8*x^3/3! + 270*x^4/4! + 35472*x^5/5! + 18318288*x^6/6! + 37611139104*x^7/7! + 308338698386160*x^8/8! + 10105807430398162176*x^9/9! + ...
Related series.
exp(L(x)) = 1 + x + 2*x^2/2! + 12*x^3/3! + 312*x^4/4! + 37008*x^5/5! + 18540576*x^6/6! + ... + A300045(n)*x^n/n! + ...
exp(L(4*x)/2) = 1 + 2*x + 12*x^2/2! + 312*x^3/3! + 37008*x^4/4! + 18540576*x^5/5! + ... + A300045(n+1)*x^n/n! + ...
exp(L(2*x)/2) = 1 + x + 3*x^2/2! + 39*x^3/3! + 2313*x^4/4! + 579393*x^5/5! + 589702779*x^6/6! + ... + A300046(n)*x^n/n! + ...
PROG
(PARI) {a(n) = my(A=1+x); for(i=1, n, A = 1 + intformal(subst(A, x, 4*x)^(1/2) +x*O(x^n) )); n!*polcoeff(log(A), n)}
for(n=1, 16, print1(a(n), ", "))
CROSSREFS
Sequence in context: A326920 A221606 A230590 * A336214 A129424 A274559
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 25 2018
STATUS
approved