login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072034
a(n) = Sum_{k=0..n} binomial(n,k)*k^n.
36
1, 1, 6, 54, 680, 11000, 217392, 5076400, 136761984, 4175432064, 142469423360, 5372711277824, 221903307604992, 9961821300640768, 482982946946734080, 25150966159083264000, 1400031335107317628928, 82960293298087664648192
OFFSET
0,3
COMMENTS
The number of functions from {1,2,...,n} into a subset of {1,2,...,n} summed over all subsets. - Geoffrey Critzer, Sep 16 2012
LINKS
FORMULA
E.g.f.: 1/(1+LambertW(-x*exp(x))). - Vladeta Jovovic, Mar 29 2008
a(n) ~ (n/(e*LambertW(1/e)))^n/sqrt(1+LambertW(1/e)). - Vaclav Kotesovec, Nov 26 2012
O.g.f.: Sum_{n>=0} n^n * x^n / (1 - n*x)^(n+1). - Paul D. Hanna, May 22 2018
MAPLE
seq(add(binomial(n, k)*k^n, k=0..n), n=0..17); # Peter Luschny, Jun 09 2015
MATHEMATICA
Table[Sum[Binomial[n, k]k^n, {k, 0, n}], {n, 1, 20}] (* Geoffrey Critzer, Sep 16 2012 *)
PROG
(PARI) x='x+O('x^50); Vec(serlaplace(1/(1 + lambertw(-x*exp(x))))) \\ G. C. Greubel, Nov 10 2017
(PARI) a(n) = sum(k=0, n, binomial(n, k)*k^n); \\ Michel Marcus, Nov 10 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Karol A. Penson, Jun 07 2002
EXTENSIONS
Offset set to 0 and a(0) = 1 prepended by Peter Luschny, Jun 09 2015
E.g.f. edited to include a(0)=1 by Robert Israel, Jun 09 2015
STATUS
approved