login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336828
a(n) = Sum_{k=0..n} binomial(n,k)^2 * k^n.
5
1, 1, 8, 108, 2144, 56250, 1836792, 71799504, 3269445888, 169974711630, 9934458411800, 644825382429096, 46022332032100800, 3582265183110626740, 302002255041807372080, 27413749834141448520000, 2665789990569658618398720, 276477318687585566522176470
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * d^n * (n-1)!, where d = (1 + 2*LambertW(exp(-1/2)/2)) / (4*LambertW(exp(-1/2)/2)^2) = 6.476217542109791521947605963458797355564... and c = 0.21617818094152997942246965143216887599763501682724844713834495... - Vaclav Kotesovec, Feb 20 2021
MATHEMATICA
Join[{1}, Table[Sum[Binomial[n, k]^2 k^n, {k, 0, n}], {n, 1, 17}]]
PROG
(PARI) a(n) = sum(k=0, n, binomial(n, k)^2*k^n); \\ Michel Marcus, Aug 05 2020
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 05 2020
STATUS
approved