login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} binomial(n,k)^2 * k^n.
5

%I #15 Feb 20 2021 11:03:32

%S 1,1,8,108,2144,56250,1836792,71799504,3269445888,169974711630,

%T 9934458411800,644825382429096,46022332032100800,3582265183110626740,

%U 302002255041807372080,27413749834141448520000,2665789990569658618398720,276477318687585566522176470

%N a(n) = Sum_{k=0..n} binomial(n,k)^2 * k^n.

%H Seiichi Manyama, <a href="/A336828/b336828.txt">Table of n, a(n) for n = 0..343</a>

%F a(n) ~ c * d^n * (n-1)!, where d = (1 + 2*LambertW(exp(-1/2)/2)) / (4*LambertW(exp(-1/2)/2)^2) = 6.476217542109791521947605963458797355564... and c = 0.21617818094152997942246965143216887599763501682724844713834495... - _Vaclav Kotesovec_, Feb 20 2021

%t Join[{1}, Table[Sum[Binomial[n, k]^2 k^n, {k, 0, n}], {n, 1, 17}]]

%o (PARI) a(n) = sum(k=0, n, binomial(n, k)^2*k^n); \\ _Michel Marcus_, Aug 05 2020

%Y Cf. A000984, A002457, A037966, A037972, A072034, A074334, A187021, A329444, A329913, A336214, A341815.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Aug 05 2020