login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074334
a(n) = Sum_{r=1..n} r^4*binomial(n,r)^2.
6
0, 1, 20, 234, 2144, 16750, 117432, 761460, 4654848, 27173718, 152867000, 834212236, 4438175040, 23108423884, 118111709744, 594059985000, 2946077521920, 14429322555750, 69892354873080, 335194270938780, 1593211647720000, 7511501237722020, 35153884344493200
OFFSET
0,3
REFERENCES
H. W. Gould, Combinatorial Identities, 1972. (See formulas 3.77, 3.78, and 3.79 on page 31.)
LINKS
Nikita Gogin and Mika Hirvensalo, On the Moments of Squared Binomial Coefficients, (2020).
FORMULA
For n>1 a(n) = n^2*(n^3+n^2-3*n-1)*C(n-2). Here C(n-2) = binomial(2*n-4, n-2)/(n-1) is a Catalan number.
From G. C. Greubel, Jun 23 2022: (Start)
a(n) = (n^2*(n^3 + n^2 - 3*n -1)/(2*(2*n-3)))*binomial(2*n-2, n-1).
G.f.: x*(1 + 2*x + 32*x^3 - 128*x^4 + 144*x^5)/(1-4*x)^(9/2).
E.g.f.: x*exp(2*x)*( (1+2*x)*(1 +6*x +4*x^2)*BesselI(0, 2*x) + 2*x*(2 + 7*x + 4*x^2)*BesselI(1, 2*x) ). (End)
D-finite with recurrence (n-1)*(39*n-106)*a(n) +4*(-38*n^2+n+290)*a(n-1) +4*(100*n^2-784*n+1145)*a(n-2) -64*(13*n+4)*(2*n-9)*a(n-3)=0. - R. J. Mathar, Sep 13 2024
MATHEMATICA
Total/@Table[r^4 Binomial[n, r]^2, {n, 0, 20}, {r, n}] (* Harvey P. Dale, Dec 04 2017 *)
Table[n^2*(n^3+n^2-3*n-1)*CatalanNumber[n-2] -Boole[n==1], {n, 0, 30}] (* G. C. Greubel, Jun 23 2022 *)
PROG
(PARI) vector(30, n, n--; sum(k=1, n, k^4*binomial(n, k)^2)) \\ Michel Marcus, Aug 19 2015
(Magma) [n le 1 select n else n^2*(n^3+n^2-3*n-1)*Catalan(n-2): n in [0..30]]; // G. C. Greubel, Jun 23 2022
(SageMath) [n^2*(n^3+n^2-3*n-1)*catalan_number(n-2) for n in (0..30)] # G. C. Greubel, Jun 23 2022
CROSSREFS
Cf. A000108 (Catalan numbers).
Sequence in context: A022648 A004315 A253010 * A163004 A278320 A061139
KEYWORD
easy,nonn
AUTHOR
Paul Boddington, Mar 05 2003
EXTENSIONS
Terms a(18) and beyond from Andrew Howroyd, Jan 16 2020
STATUS
approved