OFFSET
0,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..58
FORMULA
a(n) = A309010(n,n+1) = Sum_{k=0..n} binomial(n,k)^(n+1).
a(n) ~ c * exp(-1/4) * 2^((2*n+1)*(n+1)/2) / (Pi*n)^((n+1)/2), where c = A218792 = Sum_{k = -infinity..infinity} exp(-2*k^2) = 1.271341522189... and c = Sum_{k = -infinity..infinity} exp(-2*(k+1/2)^2) = 1.23528676585389... if n is odd. - Vaclav Kotesovec, May 06 2021
MATHEMATICA
a[n_] := Sum[Binomial[n, k]^(n + 1), {k, 0, n}]; Array[a, 14, 0] (* Amiram Eldar, May 06 2021 *)
PROG
(PARI) {a(n) = sum(k=0, n, binomial(n, k)^(n+1))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 28 2019
STATUS
approved