login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132341
Main diagonal of A132339.
2
1, 2, 10, 168, 4290, 136136, 4938024, 196125600, 8318177010, 370784099400, 17184867259560, 821870841735840, 40334204896057800, 2022686389717666848, 103312949950998743200, 5360873347802169267840, 282015983963437605168210
OFFSET
0,2
LINKS
G. Kreweras, Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, 6 (1965), see equation (67) circa p. 82.
FORMULA
a(n) = T(n, n), where T(n,k) if the array of A132339.
a(n) = A(2*n, n), where A(n, k) is the antidiagonal triangle of A132339.
a(n) ~ 2^(6*n - 9/2) / (Pi*n^3). - Vaclav Kotesovec, Mar 27 2016
a(n) = binomial(2*n, n)*binomial(4*n-2, 2*n-1)/((2*n)*(2*n-1)), with a(0) = 1. - G. C. Greubel, Dec 14 2021
MATHEMATICA
a[n_]:= If[n==0, 1, Binomial[2*n, n]*Binomial[4*n-2, 2*n-1]/(2*Binomial[2*n, 2])];
Table[a[n], {n, 0, 20}] (* G. C. Greubel, Dec 14 2021 *)
PROG
(PARI) a(n) = if (n, 2*(4*n-3)!/(n!^2*(2*n-1)!), 1); \\ Michel Marcus, Mar 27 2016
(Sage) b=binomial
def a(n): return 1 if (n==0) else b(2*n, n)*b(4*n-2, 2*n-1)/(2*b(2*n, 2))
[a(n) for n in (0..20)] # G. C. Greubel, Dec 14 2021
CROSSREFS
Cf. A132339.
Sequence in context: A328812 A126451 A260122 * A069994 A063573 A368573
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 08 2007
EXTENSIONS
More terms from Max Alekseyev, Sep 12 2009
STATUS
approved