login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218792
Decimal expansion of Sum_{n = -oo..oo} e^(-2*n^2).
7
1, 2, 7, 1, 3, 4, 1, 5, 2, 2, 1, 8, 9, 0, 1, 5, 2, 2, 5, 2, 2, 2, 3, 8, 2, 5, 7, 8, 7, 9, 0, 9, 3, 5, 6, 2, 4, 9, 7, 6, 8, 6, 4, 9, 8, 7, 7, 1, 7, 6, 2, 6, 7, 0, 1, 1, 6, 4, 4, 1, 0, 8, 0, 1, 6, 9, 7, 4, 7, 7, 5, 8, 5, 6, 6, 5, 5, 3, 0, 7, 5, 0, 6, 2, 3, 9, 3
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Dedekind Eta Function
Eric Weisstein's World of Mathematics, Jacobi Theta Functions
FORMULA
Equals Jacobi theta_{3}(0,exp(-2)). - G. C. Greubel, Feb 01 2017
Equals eta(2*i/Pi)^5 / (eta(i/Pi)*eta(4*i/Pi))^2, where eta(t) = 1 - q - q^2 + q^5 + q^7 - q^12 - q^15 + ... is the Dedekind eta function without the q^(1/24) factor in powers of q = exp(2*Pi*i*t) (Cf. A000122). - Jianing Song, Oct 14 2021
EXAMPLE
1.2713415221890152252223825787909356249768649877176...
For comparison, sqrt(Pi/2) = 1.2533141373155002512078826424055226265034933703050...
MATHEMATICA
RealDigits[Sum[E^(-2*k^2), {k, -Infinity, Infinity}], 10, 200][[1]]
RealDigits[EllipticTheta[3, 0, 1/E^2], 10, 200][[1]] (* Vaclav Kotesovec, Sep 22 2013 *)
PROG
(PARI) 1 + 2*suminf(n=1, exp(-2*n^2)) \\ Charles R Greathouse IV, Jun 06 2016
(PARI) (eta(2*I/Pi))^5 / (eta(I/Pi)^2 * eta(4*I/Pi)^2) \\ Jianing Song, Oct 13 2021
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Nov 05 2012
STATUS
approved