OFFSET
1,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
Eric Weisstein's World of Mathematics, Dedekind Eta Function
Eric Weisstein's World of Mathematics, Jacobi Theta Functions
FORMULA
Equals Jacobi theta_{3}(0,exp(-2)). - G. C. Greubel, Feb 01 2017
Equals eta(2*i/Pi)^5 / (eta(i/Pi)*eta(4*i/Pi))^2, where eta(t) = 1 - q - q^2 + q^5 + q^7 - q^12 - q^15 + ... is the Dedekind eta function without the q^(1/24) factor in powers of q = exp(2*Pi*i*t) (Cf. A000122). - Jianing Song, Oct 14 2021
EXAMPLE
1.2713415221890152252223825787909356249768649877176...
For comparison, sqrt(Pi/2) = 1.2533141373155002512078826424055226265034933703050...
MATHEMATICA
RealDigits[Sum[E^(-2*k^2), {k, -Infinity, Infinity}], 10, 200][[1]]
RealDigits[EllipticTheta[3, 0, 1/E^2], 10, 200][[1]] (* Vaclav Kotesovec, Sep 22 2013 *)
PROG
(PARI) 1 + 2*suminf(n=1, exp(-2*n^2)) \\ Charles R Greathouse IV, Jun 06 2016
(PARI) (eta(2*I/Pi))^5 / (eta(I/Pi)^2 * eta(4*I/Pi)^2) \\ Jianing Song, Oct 13 2021
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Nov 05 2012
STATUS
approved