login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069998
Decimal expansion of sqrt(Pi/2).
9
1, 2, 5, 3, 3, 1, 4, 1, 3, 7, 3, 1, 5, 5, 0, 0, 2, 5, 1, 2, 0, 7, 8, 8, 2, 6, 4, 2, 4, 0, 5, 5, 2, 2, 6, 2, 6, 5, 0, 3, 4, 9, 3, 3, 7, 0, 3, 0, 4, 9, 6, 9, 1, 5, 8, 3, 1, 4, 9, 6, 1, 7, 8, 8, 1, 7, 1, 1, 4, 6, 8, 2, 7, 3, 0, 3, 9, 2, 0, 9, 8, 7, 4, 7, 3, 2, 9, 7, 9, 1, 9, 1, 8, 9, 0, 2, 8, 6, 3, 3, 0, 5, 8, 0, 0, 4
OFFSET
1,2
COMMENTS
This constant, sqrt(Pi/2), appears in one of the formulations of the Birthday Problem: An asymptotic expansion of the expected value for the average number of people required to find a pair having the same birthday out of k possible birthdays is sqrt(Pi/2)*sqrt(k) + 2/3 + 1/12*sqrt(Pi/2)*sqrt(1/k) - 4/135*1/k + ... found by the Indian mathematician Srinivasa Ramanujan (1887-1920). - Martin Renner, Sep 14 2016
LINKS
P. Flajolet, P. J. Grabner, P. Kirschenhofer and H. Prodinger, On Ramanujan's Q-Function, Journal of Computational and Applied Mathematics 58 (1995), 103-116.
I. S. Gradsteyn and I. M. Ryzhik, Table of integrals, series and products, (1980), page 420 (formulas 3.757.1, 3.757.2).
FORMULA
From A.H.M. Smeets, Sep 22 2018: (Start)
Equals Integral_{x >= 0} sin(x)/sqrt(x) dx [see Gradsteyn and Ryzhik].
Equals Integral_{x >= 0} cos(x)/sqrt(x) dx [see Gradsteyn and Ryzhik]. (End)
Equals Integral_{x>=0} (sin(x)-x*cos(x))/x^(3/2) dx. - Amiram Eldar, May 08 2021
EXAMPLE
Sqrt(Pi/2) = 1.253314137315500251207882642... - Wesley Ivan Hurt, Sep 22 2016
MAPLE
Digits:=100: evalf(sqrt(Pi/2)); # Wesley Ivan Hurt, Sep 22 2016
MATHEMATICA
RealDigits[Sqrt[Pi/2], 10, 120][[1]] (* Harvey P. Dale, Jul 24 2012 *)
PROG
(PARI) sqrt(Pi/2) \\ G. C. Greubel, Jan 09 2017
(PARI) intnum(x=0, [oo, -I], sin(x)/sqrt(x)) \\ Gheorghe Coserea, Sep 23 2018
(PARI) intnum(x=[0, -1/2], [oo, I], cos(x)/sqrt(x)) \\ Gheorghe Coserea, Sep 23 2018
CROSSREFS
Cf. A064619.
Sequence in context: A212887 A163766 A004200 * A162405 A141637 A185581
KEYWORD
cons,easy,nonn
AUTHOR
Benoit Cloitre, May 01 2002
STATUS
approved