login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A069998 Decimal expansion of sqrt(Pi/2). 5
1, 2, 5, 3, 3, 1, 4, 1, 3, 7, 3, 1, 5, 5, 0, 0, 2, 5, 1, 2, 0, 7, 8, 8, 2, 6, 4, 2, 4, 0, 5, 5, 2, 2, 6, 2, 6, 5, 0, 3, 4, 9, 3, 3, 7, 0, 3, 0, 4, 9, 6, 9, 1, 5, 8, 3, 1, 4, 9, 6, 1, 7, 8, 8, 1, 7, 1, 1, 4, 6, 8, 2, 7, 3, 0, 3, 9, 2, 0, 9, 8, 7, 4, 7, 3, 2, 9, 7, 9, 1, 9, 1, 8, 9, 0, 2, 8, 6, 3, 3, 0, 5, 8, 0, 0, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This constant, sqrt(Pi/2), appears in one of the formulations of the Birthday Problem: An asymptotic expansion of the expected value for the average number of people required to find a pair having the same birthday out of k possible birthdays is sqrt(Pi/2)*sqrt(k) + 2/3 + 1/12*sqrt(Pi/2)*sqrt(1/k) - 4/135*1/k + ... found by the Indian mathematician Srinivasa Ramanujan (1887-1920). - Martin Renner, Sep 14 2016

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..5000

P. Flajolet, P. J. Grabner, P. Kirschenhofer, H. Prodinger, On Ramanujan's Q-Function, Journal of Computational and Applied Mathematics 58 (1995), 103-116.

I. S. Gradsteyn, I. M. Ryzhik, Table of integrals, series and products, (1980), page 420 (formulas 3.757.1, 3.757.2).

FORMULA

From A.H.M. Smeets, Sep 22 2018: (Start)

Equals Integral_{x >= 0} sin(x)/sqrt(x) dx [see Gradsteyn and Ryzhik].

Equals Integral_{x >= 0} cos(x)/sqrt(x) dx [see Gradsteyn and Ryzhik]. (End)

EXAMPLE

Sqrt(Pi/2) = 1.253314137315500251207882642... - Wesley Ivan Hurt, Sep 22 2016

MAPLE

Digits:=100: evalf(sqrt(Pi/2)); # Wesley Ivan Hurt, Sep 22 2016

MATHEMATICA

RealDigits[Sqrt[Pi/2], 10, 120][[1]] (* Harvey P. Dale, Jul 24 2012 *)

PROG

(PARI) sqrt(Pi/2) \\ G. C. Greubel, Jan 09 2017

(PARI) intnum(x=0, [oo, -I], sin(x)/sqrt(x)) \\ Gheorghe Coserea, Sep 23 2018

(PARI) intnum(x=[0, -1/2], [oo, I], cos(x)/sqrt(x)) \\ Gheorghe Coserea, Sep 23 2018

CROSSREFS

Cf. A064619.

Sequence in context: A212887 A163766 A004200 * A162405 A141637 A185581

Adjacent sequences:  A069995 A069996 A069997 * A069999 A070000 A070001

KEYWORD

cons,easy,nonn

AUTHOR

Benoit Cloitre, May 01 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 18:24 EST 2019. Contains 329241 sequences. (Running on oeis4.)