login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229052
a(n) = Sum_{k=0..n} binomial(n^2-n*k, n*k-k^2) * binomial(n*k, k^2).
3
1, 2, 6, 92, 6662, 2150552, 3093730764, 18251332286098, 466740831542894470, 47238803741195397513182, 20522607409110459026633535856, 34700017072200465774261952422246668, 250699892545838622857396499800167790109260, 6984916990466628202550631436961441381064765905022
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} binomial(n^2-n*k, (n-k)^2) * binomial(n*k, k^2).
a(n) = Sum_{k=0..n} A228832(n, n-k) * A228832(n, k).
a(n) = Sum_{k=0..n} (n^2-n*k)! * (n*k)! / ( ((n-k)^2)! * (n*k-k^2)!^2 * (k^2)! ).
a(n) ~ c * 2^(n^2+2)/(Pi*n^2), where c = EllipticTheta[3,0,1/E^2] = 1.271341522189... if n is even and c = EllipticTheta[2,0,1/E^2] = 1.23528676585389... if n is odd. - Vaclav Kotesovec, Sep 22 2013
EXAMPLE
The triangle A228832(n,k) = C(n*k, k^2) illustrates the terms involved in the sum a(n) = Sum_{k=0..n} A228832(n, n-k) * A228832(n, k):
1;
1, 1;
1, 2, 1;
1, 3, 15, 1;
1, 4, 70, 220, 1;
1, 5, 210, 5005, 4845, 1;
1, 6, 495, 48620, 735471, 142506, 1;
1, 7, 1001, 293930, 30421755, 183579396, 5245786, 1; ...
MATHEMATICA
Table[Sum[Binomial[n^2 - n k, n k - k^2] Binomial[n k, k^2], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 22 2013 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n^2-n*k, n*k-k^2)*binomial(n*k, k^2))}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 22 2013
STATUS
approved