login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229053
Number of standard Young tableaux of n cells and height <= 11.
3
1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 140151, 568491, 2390311, 10347911, 46191551, 211671999, 996269310, 4801547628, 23695885170, 119481280210, 615372604033, 3232009497979, 17302866542177, 94301143232321, 522945331559246, 2947729723188352
OFFSET
0,3
FORMULA
Recurrence: (n+10)*(n+18)*(n+24)*(n+28)*(n+30)*a(n) = (6*n^5 + 535*n^4 + 17752*n^3 + 265085*n^2 + 1658520*n + 2755377)*a(n-1) + (n-1)*(125*n^4 + 7472*n^3 + 149299*n^2 + 1090536*n + 1857231)*a(n-2) - 2*(n-2)*(n-1)*(270*n^3 + 11843*n^2 + 154023*n + 546120)*a(n-3) - (n-3)*(n-2)*(n-1)*(3319*n^2 + 74458*n + 331317)*a(n-4) + 3*(n-4)*(n-3)*(n-2)*(n-1)*(2578*n + 28701)*a(n-5) + 10395*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-6).
a(n) ~ 40186125/1024 * 11^(n+55/2)/(Pi^(5/2)*n^(55/2)).
Conjecture: a(n) ~ k^n/Pi^(k/2)*(k/n)^(k*(k-1)/4) * prod(j=1,k,Gamma(j/2)).
MATHEMATICA
RecurrenceTable[{-10395 (-5+n) (-4+n) (-3+n) (-2+n) (-1+n) a[-6+n]-3 (-4+n) (-3+n) (-2+n) (-1+n) (28701+2578 n) a[-5+n]+(-3+n) (-2+n) (-1+n) (331317+74458 n+3319 n^2) a[-4+n]+2 (-2+n) (-1+n) (546120+154023 n+11843 n^2+270 n^3) a[-3+n]-(-1+n) (1857231+1090536 n+149299 n^2+7472 n^3+125 n^4) a[-2+n]+(-2755377-1658520 n-265085 n^2-17752 n^3-535 n^4-6 n^5) a[-1+n]+(10+n) (18+n) (24+n) (28+n) (30+n) a[n]==0, a[1]==1, a[2]==2, a[3]==4, a[4]==10, a[5]==26, a[6]==76}, a, {n, 20}]
CROSSREFS
Cf. A182172, A001405 (k=2), A001006 (k=3), A005817 (k=4), A049401 (k=5), A007579 (k=6), A007578 (k=7), A007580 (k=8), A212915 (k=9), A212916 (k=10).
Column k=11 of A182172.
Cf. A000085.
Sequence in context: A239081 A212916 A239082 * A229068 A000085 A222319
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Sep 12 2013
STATUS
approved